
日本電気株式会社 システム IP コア研究所
SYSTEM IP CORE LABORATORY,
NEC CORPORATION

研修報告書
INTERNSHIP REPORT.

Interference Mitigation for WCDMA Using QR Decomposition and a

CORDIC-based Reconfigurable Systolic Array

Robin SCHEIBLER†, James OKELLO††, Katsutoshi SEKI††, Tomoyoshi KOBORI††,

and Masao IKEKAWA††

† Swiss Federal Institute of Technology, Lausanne, Switzerland
†† System IP Core Laboratory, NEC Corporation

Abstract This paper presents implementation and performance of QR Decomposition based Recursive Least-

-Squares (QRD-RLS) for interference mitigation in Wideband CDMA (WCDMA). The implementation is carried on

CORSAEngine which is a new Software-Defined Radio (SDR) processor developed by NEC Corporation and highly

optimized for MIMO-OFDM systems. It is shown how QRD-RLS can be mapped on its rectangular CORDIC-based

reconfigurable systolic array, hence demonstrating its capability to process WCDMA. In addition, the performance of

CORSAEngine is compared to that of other architectures and it is found to achieve at least 91% of the performance

of dedicated hardware in terms of computational density.

Key words Software-Defined Radio, QR Decomposition, Wideband CDMA, Interference Mitigation

1. Introduction

In 1991, Mitola [15] introduced the concept of Software-

Defined Radio (SDR) that allows operations of different

modes of communications systems on a single hardware, dra-

matically decreasing equipment costs and development time

of new technologies. While programmability is attractive to

mobile communication equipments manufacturers and oper-

ators, it also brings one of the biggest challenges of SDR. The

need to maintain high performance while retaining enough

flexibility to process as many different standards as possible.

This constraint becomes even more difficult to fulfill as mod-

ern communication standards require more complex signal

processing technology.

In the field of cellular communications, such modern stan-

dards are usually referred to as Beyond 3G (B3G) technolo-

gies. It has been recognized that B3G systems, already ex-

emplified by WiMAX and 3GPP LTE among others, will

heavily rely on Orthogonal Frequency Division Multiplex-

ing (OFDM) and Multiple-Input Multiple-Output (MIMO)

technologies [18]. But at the same time, it is important for

an SDR to support non-OFDM-based standards like IS-95,

CDMA2000 and WCDMA. Firstly, those systems enjoy a

very deep market penetration and are likely to remain used

for many years. Secondly, in the case of WCDMA, it has the

potential to be used in conjunction with an OFDM scheme

such as in Multi-Carrier Code Division Multiple Access (MC-

CDMA).

Recently, NEC Corporation developed CORSAEngine, a

new SDR processor highly optimized for MIMO-OFDM sys-

tems [17]. Its rectangular COordinate Rotation DIgital Com-

puter (CORDIC) based reconfigurable systolic array makes it

highly suitable to process the computationally intensive base-

band algorithms required by those systems, among others

QR Decomposition (QRD), Singular Value Decomposition

(SVD), least-squares fit or fast Fourier transform. However,

performance of efficient interference mitigation algorithms

for WCDMA had not been investigated on this processor.

This paper presents the implementation and the perfor-

mance of QR Decomposition based Recursive Least-Squares

(QRD-RLS) for interference mitigation of WCDMA on

CORSAEngine. QRD-RLS has been shown to effectively

mitigate both Intersymbol Interference (ISI) and Multiple

Access Interference (MAI), outperforming the conventional

Rake while maintaining reasonable complexity when imple-

mented as a systolic array [14]. In this paper, it is shown how

this arbitrarily large systolic array can be split into parts that

fit on the reduced size array of CORSAEngine. Through re-

configurability, it is furthermore possible to run successively

those different parts on the same hardware structure.

The remainder of this paper is organized as follows. Sec-

tion 2 gives a brief revision of conventional and QRD-RLS

based interference for WCDMA along with simulation re-

sults and computational load comparison of those two meth-

ods. In Section 3, the architecture of CORSAEngine is de-

scribed. The mapping of QRD-RLS onto the systolic array

— 1 —

u

CPICH
Matched Filter

Correlator
user

Finger 2

Finger 1

Finger K

Search
Paths

Estimation
Channel

r(n) d̂ (n)
�

�

�

1

2

�

*

*

*

Fig. 1 Block diagram of the conventional Rake receiver.

user

QRD−RLS

Combiner
r (n)û

r (n)p̂

ud (n)^r(n)

w
CPICH

Matched Filter

Matched Filter

Fig. 2 Block diagram of WCDMA receiver based on QRD-RLS.

is described in Section 4. Finally in Section 5, the perfor-

mance of the implementation of WCDMA on CORSAEngine

is assessed and a benchmark against other devices is done.

Section 6 concludes this paper.

2. Interference Mitigation in WCDMA

2. 1 Conventional Interference Mitigation

The conventional interference mitigation for WCDMA is

characterized by the Rake receiver shown in Fig. 1. It uses

short-time averaging (typically two slots) of the received pi-

lot symbols to estimate the channel characteristics. Then,

long-time averaging (about one frame) is used to get a good

power delay profile of the channel. The Path Search uses a

threshold-based algorithm to select the paths with a suffi-

ciently large Signal-to-Noise Ratio (SNR). Those paths are

despread using a bank of correlators and combined accord-

ing to the Maximum Ratio Combining (MRC) principle with

respect to the channel coefficients. For different algorithm

for channel estimation and path search, refer to [8], [9]. For

more details about the principles of the Rake receiver, refer

to [16].

2. 2 QRD-RLS Interference Mitigation

This section describes QRD-RLS based interference miti-

gation applied to WCDMA. A block diagram of the receiver

considered is shown in Fig. 2. First the Common Pilot CHan-

nel (CPICH) and the signal of the user of interest are de-

spread using Matched Filters (MF) corresponding to their

respective spreading codes. The despread pilot signal r̂p(n)

is then sent to the QRD-RLS weight calculation unit which

produces the optimal weight vector w. It is then sent to

the combiner and used to combine the despread user signal

r̂u(n).

In the WCDMA system, the despread signal can be written

as in [6] :

r̂(n) = σld(i) + I(n) + ξ(n), (1)

where the time index n = iF + l with i ∈ N and l ∈
{0, . . . , F −1}, F is the spreading factor, σl is a multiplica-

tive coefficient introduced by the channel impulse response

and the spreading code autocorrelation function and d(i) is

the ithsymbol sent. I(n) is an interference term created by

the ISI and the MAI. ξ(n) is the filtered noise. Let’s define

u(i) = [r̂(iF), . . . , r̂(iF +M −1)]T , a vector containing the

M first chips of the despread signal corresponding to the ith

symbol sent. The goal is then to find the optimal weight

vector w(m) = [w0(m), . . . , wM−1(m)]T to combine the ele-

ments of uu(i) = [r̂u(iFu), . . . , r̂u(iFu+M−1)]T in order to

enhance the symbol du(i) and reduce the interference signal

I(n), m being the number of symbols received so far. Sub-

script p and u are used to distinguish between pilot and user

signals.

QRD-RLS is a technique borrowed from the adaptive fil-

tering theory [11]. To adaptively calculate w(m), it attempts

to minimize the following error function :

E(m) = ‖Λ(m)(A(m)w(m) − d(m))‖ (2)

where A(m) = [up(0), . . . , up(m)]H contains the received pi-

lot signal, Λ(m) = diag(λm/2, . . . , λ1/2, 1) the exponentially

decreasing forgetting factor and d(m) = [dp(0), . . . , dp(m)]H

the original pilot symbols.

Minimizing Eq. (2) can be done by multiplying

Λ(m)[A(m) d(m)] by a unitary matrix Q(m) :

Q(m)Λ(m)[A(m) d(m)] =

[
R(m) p(m)

0 v(m)

]
, (3)

where R(m) is an M × M upper triangular matrix, p(m)

is a vector of length M , 0 is an (m−M) × M null matrix

and v(m) is a vector of length m−M . The least-squares

estimation of w(m) is then given by :

w(m) = R−1(m)p(m). (4)

Once w(m) has been calculated, it is used to combine the

signal of the user :

d̂u(i) = wH(m)uu(i). (5)

Using the Extended QRD-RLS algorithm described in [14],

the recursion can be done by applying QRD to the following

extended (M+2) × (2M+2) matrix :[
R̃(m+1) R̃

−H
(m+1)

0 v′(m+1)

]

= Q′(m+1)

[
Λ′R̃(m) (Λ′)−1R̃

−H
(m)

ũH(m+1) 0

]
, (6)

— 2 —

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

Su
b

m
em

or
y

ba
nk

M
em

or
y

B
an

k

A
dd

re
ss

 g
en

er
at

or
C

on
tr

ol
 u

ni
t

ad
dr

es
s

po
in

te
r

C
on

te
xt

Memory interface

External bus

CPE

CPE

DPE DPE

CPE
CPE

DPE

CPE CPE CPE

DPE

DPE DPE

CPE
CPE

DPE

DPE DPE

CPE
CPE

DPE DPE

CPE
CPE

CPE

DPE

CPE
DPE DPE

DPE DPE

CPE
CPE

CPE
DPE DPE

CPE
DPE DPE

CPE

Fig. 3 CORSAEngine architecture.

where Λ′ = diag(λ, . . . , λ, 1), ũH(m+1) = [uH
p (m+1)d∗

p(m+

1)], v′(m+1) is an auxiliary vector and

R̃(m) =

[
R(m) p(m)

0 α(m)

]
, (7)

where α(m + 1) is a scalar. After the matrix Q′ has zeroed

ũH(m+1), a scaled version of the new weight vector appears

in R̃
−H

(m+1) :

R̃
−H

(m+1) =

[
R−H(m+1) 0

−wH (m+1)
α(m+1)

1
α(m+1)

]
. (8)

This method has the advantage of avoiding back-

substitution which can be very time-consuming if it has to

be performed frequently.

3. CORSAEngine Architecture

CORSAEngine’s architecture is composed of a 2-

dimensional array of processing nodes (PN), a control unit,

a memory bank and an address generator which controls the

algorithms running on the array. The work presented here

was realized on a scaled-down architecture represented in

Fig. 3.

This scaled-down version of CORSAEngine has a 2-by-5

array of PNs. Each PN is composed of two CORDIC Pro-

cessing Elements (CPE) and two Delay Processing Elements

(DPE). The CPEs implement the unfolded CORDIC algo-

rithm which allows pipelining. The pipeline is used to imple-

ment interleaved threads. Different data sets or even com-

pletely unrelated algorithm can be executed in the different

threads. The data types supported by the processor are real

and complex numbers and rotation angles, which are a sub-

set of real numbers. A complex number is the concatenation

of two real numbers. A 20-bit floating point format, consist-

ing of a 16-bit mantissa and a 4-bit exponent is used for real

numbers.

The control of the operations on the array is done by a

context pointer which is attached to the data by the mem-

ory interface when it is sent from the memory to the array.

Then, every CPE and DPE possesses an instruction table

linking a context pointer to the operation to be done with

the incoming data and the destination of the result. The

result can be sent to any neighboring PN. PNs have horizon-

tal and diagonal connections. A horizontal connection can

hold one complex or two real numbers while a diagonal con-

nection is limited to one real number. As a result, complex

data flows can be created in the array, giving an efficient and

flexible way to easily implement systolic algorithm.

4. Implementation of QRD-RLS

In this section, the implementation of the Extended QRD-

RLS algorithm on the array of CORSAEngine is described.

An example of the Extended QRD-RLS systolic array for a 3-

tap weight vector is given in Fig. 4. Each non-zero complex-

valued coefficient of the matrix R̃ext =
[
R̃(m) R̃

−H
(m)

]
is

represented by one cell. This cell holds the coefficient value

in its register. Note that the coefficient in the right-bottom

corner of the matrix is not needed and hence doesn’t require

a cell.

4. 1 Cell operations

Two main types of cell can be seen. Border cells are placed

on the left diagonal and produce the required Givens rota-

tion to nullify the input. Inner cells apply this rotation to

their own input and register value. One more distinction

can be made between cells holding the coefficients of R, p or

R−H and the last row containing the scaling factor α and

the scaled weights −w/α. The former must multiply the co-

efficient they hold with the forgetting factor between every

two input, while the latter don’t.

Fig. 5 describes how the operations of the cells composing

the array can be implemented using CORDIC units in vec-

toring (VEC), rotation (ROT) and multiplication mode. The

two stages of the complex givens rotation are referred to as

θ-VEC/ROT and φ-VEC/ROT. In the cells of normal rows,

the forgetting factor λ must be applied to the register value

after every input. However, as the input of the φ-VEC/ROT

depends on the output of the CORDIC unit applying the

forgetting factor, those two operations cannot be pipelined.

As a result, the φ-VEC/ROT can only operate every two cy-

cle. If the same CORDIC is used for both the φ-VEC/ROT

and the multiplication by λ, it is fully utilized. But on the

other hand the CORDIC used for the θ-VEC/ROT will only

be used every two cycles thus wasting half of this resource.

As a solution, the same CORDIC can be time-shared by two

adjacent cells for their θ-VEC/ROT as illustrated in Fig. 6.

The left cell first receives its input and the angle θ, apply

the latter to the former and send the result down to its φ-

VEC/ROT unit. However, the angle θ is is not sent further

but stored in a register of the CORDIC unit. In the next

— 3 —

1w*0w* 2w*: Inner cell (Rotation)

: Border cell (Vectoring)

0

0

0

�

−1

u*(0) u*(1) u*(2) d*

−w*/ −w*/ −w*/� � �

R−HR−HR−Hp3R

RR

RR R p1 R−H

R−Hp2 R−H

32 333133

22 23 21 22

11131211

0 1 2

Fig. 4 A systolic array for the production of a 3-tap weight vec-

tor using Extended QRD-RLS. Border cells doing complex

vectoring and inner cells doing complex rotation are repre-

sented respectively as round and squared cells. A distinc-

tion is made between cells that must apply the forgetting

factor, in white, and the ones that don’t, in gray.

cycle, the same CORDIC unit receives only the input of the

right cell. It will then reuse the angle stored to rotate the

input before sending the result down to the φ-ROT unit of

the right cell. This time, θ is not stored but sent to the next

cell on the right.

As the cells from the last row don’t apply the forgetting

factor, it allows the two CORDIC operations to be fully

pipelined. Therefore, successive cells can be connected to

each other in a straightforward manner and no time-sharing

of CORDIC units is required. And, as the registers of the

cells contain a scaled version of the desired weights and the

scaling factor α, it is possible, by adding one multiplication

to each cell, to scale the weights before they are output. The

structure of those cells is also illustrated in Fig. 5.

4. 2 Partitioning

Now that the cell operations have been mapped to

CORDIC units, it is possible to use them to construct a

full size array for the production of an M -tap weight vector.

Such an array has M2 + 3M + 1 cells, each using from 3

to 5 CORDIC units depending on its type. Consequently it

has to be divided into smaller partitions that will be succes-

sively run on the PN array of CORSAEngine. Because of

the strong vertical dependency in the Extended QRD-RLS

array, it is first divided into rows, each row having M + 2

cells except the last one with M + 1 cells. To make it fit

on the PN array, these rows still have to be subdivided into

segments of a few cells as shown in Fig. 7. Each of these

segments contains 7 cells for a normal row and 3 cells for

the last row. Considering a single row there are two types of

segments: one with a border cell at the beginning and one

containing only inner cells that will be respectively referred

�

VEC

VEC

ROTROT

ROT

Re(u)out Im(u)out

VEC

VEC

ROTROT

ROT

Re(t) Im(t)|u |

�

�
in

���−1

�

� �

�

Re(u) Im(u)inin

������

Re(u)in inIm(u)

�

r |u |

�

�

Re(u) inin Im(u)

in

� �

Im(r)Re(r)

�

� �

�

Re(u) Im(u)inin

Re(t) Im(t)

N
or

m
al

 ro
w

L
as

t r
ow

Rotation modeVectoring mode

�

Re(w) Im(w)out out

Re(−w/) Im(−w/)�

Fig. 5 The CORDIC implementation of the different cells com-

posing a systolic array for Extended QRD-RLS. The mul-

tiplication present are also implemented with CORDIC

units using a multiplication opcode. the values r and λ

are contained in the registers of the CORDIC units.

to as border and inner segments. In conclusion we have 4

partition types, T, X, Y and Z, with respectively T and

X referring to border and inner segments of a normal row

and Y and Z to border and inner segments of the last row.

Each partition type is implemented on the array as a specific

context pointer.

To run the complete algorithm, it is first assumed that the

matrix R̃ext, as well as the N new pilots received along with

their local copies in the form of the matrix :

U =


ũH(m + 1)

...

ũH(m + N)

 , (9)

are stored in the memory bank. A flowchart of the algorithm

is represented in Fig. 8. The 7 first coefficients of the first

row of R̃ext are loaded into the registers of the appropriate

CORDIC units. Then the 7 first columns of U are processed

through the array configured as partition T. The processed

columns, the modified coefficients of R̃ext and the angles pro-

duced are stored back into memory. The next 7 coefficients

of R̃ext are now loaded into the appropriate CORDIC units

registers and the next 7 columns of U are processed, this

time using a partition type X configuration and the angles

produced by the partition T. Processed columns and register

values are sent back to memory at the end of the execution.

This step is repeated until all columns of U have been pro-

— 4 —

���������������

−1

�����
�

����� �����
� �

N
or

m
al

 ro
w

L
as

t r
ow

Inner partitionBorder partition

Type XType T

Type Y Type Z

Fig. 7 The four partition types created. With those four types,

it is possible to process different array size on the same

rectangular systolic array.

Method MF and Comb. PS/QRD-RLS Total

RAKE 200 MFLOPS 0.2 MFLOPS 200 MFLOPS

QRD-RLS 250 MFLOPS 290 MFLOPS 540 MFLOPS

Table 1 Comparison of the computational load of QRD-RLS

based interference mitigation with the conventional

Rake receiver.

cessed. After this, a new matrix U ′ has actually replaced

U in the memory. Now for the second row of the array the

whole process is repeated using U ′ and the second row of

R̃ext. Eventually, all the rows of the array are processed in

the same way, only for the last row, types Y and Z replace

types T and X and the number of columns processed at a

time is only 3. The outputs of the last rows are the N weight

vectors corresponding to the N rows of the input matrix U .

5. Performance Evaluation

5. 1 Simulation Results

Simulation of a WCDMA downlink were carried out to

determine the necessary length M of the weight vector w.

The simulated transceiver used is compliant to current 3GPP

standards [1], [2]. Perfect pulse shaping, perfect synchroniza-

tion and no power control were assumed. The channel model

used is the Typical Urban channel from [3]. Simulations were

run with coherence time of 1 frame and then 5 slots, corre-

sponding respectively speeds of 13 km/h and 40 km/h. As

shown in Fig. 9, a length M = 16 is found to be sufficient to

outperform the Rake by as much as an order of magnitude

at high Signal-to-Noise Ratio.

5. 2 Computational Load

To highlight the cost of the performance gain brought by

QRD-RLS based interference mitigation, its computational

load is compared to the one of the conventional Rake re-

ceiver. QRD-RLS uses the 10 and 8 pilots per slot, present

respectively in CPICH and the user data channel [1], to com-

pute a 16-tap weight vector. A 10 fingers Rake receiver is

considered for comparison. It uses the method described

in [8] to obtain a channel estimate with a resolution of 16

paths. It is assumed that synchronization has already been

performed at this stage. Complexity of QRD of an m × n

MF Pilot MF Data QRD-RLS Combining Total

4% 6.25% 1.15% 0.35% 11.75%

Table 2 The detail of the resource consumption of the differ-

ent steps of QRD-RLS based interference mitigation on

CORSAEngine.

matrix where m > n is given by 3n2(m−n/3) [10]. As shown

in Table 1, the complexity of the QRD-RLS based method

is more than 2.5 times the one of the Rake . The main dif-

ference comes from the QRD-RLS algorithm which is com-

putationally intensive compared to the insignificant amount

of computation required by the path search in the Rake .

However, it is shown in the following sections that using the

implementation introduced in Section 4., this complexity can

be easily handled by CORSAEngine.

5. 3 Resource Usage

In this section, the resource usage of QRD-RLS will be

calculated. As shown in Section 5. 1, a 16-tap weight vec-

tor is sufficient to efficiently mitigate interference. Using the

implementation as described in Section 4. 2, it is possible

to construct an array for the calculation of a 19-tap weight

vector which is therefore sufficient to efficiently mitigate the

interference. Taking into account the matched filtering of

pilot and data channel as well as the combining, QRD-RLS

interference mitigation for WCDMA consumes 11.75% of the

resources of the scaled-down version of the CORSAEngine.

The resource consumptions of the different blocks of the in-

terference mitigation are detailed in Table 2.

5. 4 Benchmark

The performance of the implementation of QRD-RLS on

CORSAEngine will now be compared to other implementa-

tions on different architectures. The architectures considered

for comparison are : two dedicated hardwares for QRD-RLS,

based on designs conducted on respectively Altera Stratix [5]

and Xilinx Virtex-4 [7] FPGAs, and an Application Specific

Instruction set Processor (ASIP) for matrix computations

(QRD, SVD) using an array of modified CORDIC units [13].

The performance metric used to compare those architec-

tures is the computational density defined as :

ρm×n =
1

tm×n ×
∑

i
ui × Ai

, (10)

where tm×n is the processing time for a complex matrix of

size m×n in seconds [s], Ai and ui are respectively the chip

area in [Kgates] and a resources utilization factor. The index

i accounts for architectures with totally independent parts.

To make a fair comparison, the CORSAEngine implementa-

tion is adapted to the matrix sizes that were used for eval-

uating performance of the referred architectures [5], [7], [13].

The performance of the CORSAEngine is furthermore used

to normalize the results.

— 5 —

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������

�������������
�������������
�������������
������������� u 11,in

u 21,in

2

u 21,in

�
1

�
1

�
1

�
1

u 22,in

2

2

�
2

u 21,in

u 31,in

3

u 31,in

�
2

�
2

�
2

�
2

u 12,out u 22,out

Re(t1)
Im(t1)

PN1PN1

�
VEC

�
ROT

�
VEC

Re(t1)

Im(t1)

PN1

�
VEC

�
r

PN2

�
ROT

�
ROT

Re(t2)
Im(t2)

PN1

�
ROT

�
VEC

PN2

�
r

�
r

Re(t2)

Im(t2)

PN1

�
VEC

�
r

PN2

�
ROT

�
ROT

PN2 PN2

timeCycle 2Cycle 1 Cycle 3 Cycle 4 Cycle 5

r1r1
r1r1

r1 r1
r1 r1

Re(r2)

Im(r2)
Im(r2)

Re(r2) Re(r2)

Im(r2)

Re(r2)

Im(r2)

Re(r2)

Im(r2)

Re(r2)

u

Im(r2)

11,in

1

u 11,in

u 12,in

1

1

�
1

Fig. 6 An example of a border (vectoring) and an inner (rotation) cell on a normal row sharing a CORDIC respectively for the

vectoring and rotation of their inputs. The CORDIC is used in vectoring mode during the odd cycles and in rotation

mode during the even cycles. Dashed lines represent values that are kept in a register.

��� �

U := U’

Move to
last row ?

U1−3

1−2W

Partition Y

Memory Bank

U8−14

W3−5

Partition Z

U1−7

1−6U’

Partition T

U8−14

U’7−13

Partition X

Memory Bank Memory Bank

U’14−20

15−20U o

o

Partition X

Memory Bank

W18−19

19−20U o

o

Partition Z

No

Memory Bank

Yes

Memory Bank
��� ��� ���� ��� � ��� ��� ���� � ��� �

Fig. 8 A run of the algorithm for a 19-tap weight vector. The gray rectangle represents the array of CORSAEngine, the dashed

line is for angles and scaling factor that return to memory. Ui-j is the matrix composed of the ithto the jthcolumns of U .

The matrix W output by the last row contains all the weight vectors produced by the processing of the matrix U through

the Extended QRD-RLS systolic array.

−5 0 5 10 15
10

−3

10
−2

10
−1

U
nc

od
ed

 B
ER

SNR (dB)

Rake, 10 Fingers
QRD−RLS

(a) 13 km/h

−5 0 5 10 15
10

−3

10
−2

10
−1

SNR (dB)

U
nc

od
ed

 B
ER

Rake, 10 Fingers
QRD−RLS, M = 16

(b) 40 km/h

Fig. 9 Performance of QRD-RLS in quarter system load (4 users) with a spreading factor of 16.

Table 3 shows the results of the benchmark. The area esti-

mation of the dedicated hardwares was based on the number

of lookup tables used in the FPGA design. The correspond-

ing number of gates was estimated according to the avail-

able literature [12], [19]. The Altera Stratix design uses two

CORDIC blocks for the QRD and the Embedded Nios Soft

processor for the back-substitution. The performance of the

latest version of the Nios (II) were used [4]. In the case of

the ASIP, as it only handles real-valued QRD-RLS, the fact

that a 128×20 real-valued matrix can be used to represent a

64 × 10 complex-valued matrix is used. For CORSAEngine,

a utilization factor is introduced as an input matrix with 10

columns such as the ones used in the benchmark only use

80.2% of the resource available.

The result of the benchmark shows that CORSAEngine

achieves respectively 50% and 80% more computational den-

sity than the dedicated hardware II (based on Xilinx design)

and the ASIP processor. The dedicated hardware I (based on

— 6 —

Ded. Hardware I [5] Ded. Hardware II [7] ASIP [13] CORSAEngine CORSAEngine

Clock frequency [MHz] 170 250 300 300 300

Matrix size 64 × 10 10 × 10 64 × 10 64 × 10 10 × 10

tm×n [µs] 268.67 56.76 7.04 10.63 2.89

A [gates] 33480 95310 7M 1150K 1150K

Utilization factor 100% 100% 100% 80.2% 80.2%

ρ [update/s/Kgates] 111.22 184.85 20.29 102 375.17

Normalized to CORSA 109.04% 49.27% 19.8% 100% 100%

Table 3 Performance of the different architectures in terms of the computational density ρ. The final result is normalized

in terms of the performance of CORSAEngine to give a fair comparison when the matrix sizes used are different.

Altera design), on the other hand, achieves 9% more com-

putational density. However, it should be noted that the

dedicated hardware I (as well as dedicated hardware I and

the ASIP) implements the weight extraction as back substi-

tution. It was assumed in this benchmark that the weight

are only extracted once after QRD has been done. However,

the CORSAEngine implementation, as it uses the Extended

QRD-RLS as described in Section 2. 2, output one weight

vector after every input row in any case. It will therefore

achieve better performance in term of interference mitiga-

tion when the coherence time of the channel is very short.

6. Conclusion

In this paper a new implementation of QRD-RLS inter-

ference mitigation for WCDMA on CORSAEngine has been

presented. First the necessary complex Givens operations

were mapped to the available CORDIC units in a way that

maximize the utilization of resources. Then the Extended

QRD-RLS systolic array was split into manageable sizes that

fit on the PN array of CORSAEngine. Simulations were fur-

thermore used to determine the necessary size of the weight

vector to be about 19 taps. Finally, the performance of this

implementation was compared to other available architec-

tures for QRD-RLS and it was shown to achieve at least 91%

of the dedicated hardware performance in terms of compu-

tational density. In conclusion, CORSAEngine was shown

to be able to handle computationally intensive but efficient

interference mitigation algorithm for WCDMA using only

11.75% of its resources.

Acknowledgments This work was realized between March

2007 and January 2008 while the first author was an internship stu-

dent at the System IP Core Laboratory, NEC Corporation.

References

[1] 3GPP TS 25.211 V7.1.0, “Physical channels and mapping

of transport channels onto physical channels (fdd),” 2007.

[2] 3GPP TS 25.213 V7.1.0, “Spreading and modulation (fdd),”

2007.

[3] 3GPP TS 25.943 V6.0.0, “Deployment aspects,” 2004.

[4] Altera, “Nios II performance benchmark.” Altera Data

Sheet, 2007.

[5] D. Boppana, K. Dhanoa, and J. Kempa, “FPGA based

embedded processing architecture for the QRD-RLS algo-

rithm,” Field-Programmable Custom Computing Machines,

2004. FCCM 2004. 12th Annual IEEE Symposium on,

pp.330–331, 20-23 April 2004.

[6] G. Bottomley, T. Ottosson, and Y.P. Wang, “A generalized

rake receiver for interference suppression,” Selected Areas in

Communications, IEEE Journal on, vol.18, no.8, pp.1536–

1545, Aug 2000.

[7] C. Dick, F. Harris, M. Pajic, and D. Vuletic, “Real-Time

QRD-Based Beamforming on an FPGA Platform,” Signals,

Systems and Computers, 2006. ACSSC ’06. Fortieth Asilo-

mar Conference on, pp.1200–1204, Oct.-Nov. 2006.

[8] S. Fukumoto, K. Okawa, K. Higuchi, M. Sawahashi, and

F. Adachi, “Path search performance and its parameter op-

timization of pilot symbol-assisted coherent Rake receiver

for W-CDMA mobile radio,” IEICE Trans. Fundamentals,

vol.E83-A, no.11, pp.2110–2119, November 2000.

[9] S. Fukumoto, M. Sawahashi, and F. Adachi, “Matched

filter-based Rake combiner for wideband DS-CDMA mobile

radio,” IEICE Trans. Commun., vol.E81-B, no.7, pp.1384–

1391, July 1998.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations,

3 ed., Johns Hopkins, 1996.

[11] S. Haykin, Adaptive Filter Theory, 4 ed., Prentice Hall,

2002.

[12] H. Krupnova and G. Saucier, “FPGA technology snapshot:

current devices and design tools,” Rapid System Prototyp-

ing, 2000. RSP 2000. Proceedings. 11th International Work-

shop on, pp.200–205, 2000.

[13] Z. Liu, K. Dickson, and J. McCanny, “Application-specific

instruction set processor for SoC implementation of modern

signal processing algorithms,” Circuits and Systems I: Regu-

lar Papers, IEEE Transactions on, vol.52, no.4, pp.755–765,

April 2005.

[14] T.Z. Mingqian, A.S. Madhukumar, and F. Chin, “QRD-

RLS Adaptive Equalizer and its CORDIC-based Implemen-

tation for CDMA Systems,” International Journal on Wire-

less & Optical Communications, vol.1, no.1, pp.25–39, 2003.

[15] J. Mitola III, “Software radios-survey, critical evaluation

and future directions,” Telesystems Conference, 1992. NTC-

92., National, pp.13/15–13/23, 19-20 May 1992.

[16] A.F. Molisch, Wireless Communications, IEEE Press, 2005.

[17] K. Seki, T. Kobori, J. Okello, and M. Ikekawa, “A CORDIC-

Based Reconfigrable Systolic Array Processor for MIMO-

OFDM Wireless Communications,” Signal Processing Sys-

tems, 2007 IEEE Workshop on, pp.639–644, 17-19 Oct.

2007.

[18] M. Steer, “Beyond 3G,” Microwave Magazine, IEEE, vol.8,

no.1, pp.76–82, Feb. 2007.

[19] Xilinx, “An alternate capacity metric for LUT-based FP-

GAs.” Xilinx Application Brief, 1997.

— 7 —

