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Abstract—We introduce an algorithm for the efficient computation
of the continuous Haar transform of 2D patterns that can be desribed
by polygons. These patterns are ubiquitous in VLSI processewhere
they are used to describe design and mask layouts. There sgkis of
paramount importance due to the magnitude of the problems tobe
solved and hence very fast algorithms are needed. We show thhy
techniques borrowed from computational geometry we are notonly
able to compute the continuous Haar transform directly, but dso to
do it quickly. This is achieved by massively pruning the trarsform
tree and thus dramatically decreasing the computational lad when
the number of vertices is small, as is the case for VLSI layost We
call this new algorithm the pruned continuous Haar transform. We
implement this algorithm and show that for patterns found in VLSI
layouts the proposed algorithm was in the worst case as fastsaits
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detailed, and thus computationally expensive, simulation of the
physical process of lithography. The HT is a perfect candidate to
provide features in that case due to its close match to the polygons
found in VLSI layouts. However, to obtain these features one has
first to perform the transform of the enormous amount of data
contained in modern VLSI layouts. It is thus crucial to have a very
fast algorithm to yield HT coefficients from the vertex description
of the polygons.

The most straightforward way would be to first create a discrete
image by sampling the polygons, and then use the discrete Haar
transform (DHT) on the resulting image. However, the polygons
describe an inherently continuous function, which allows us to

discrete counterpart and up to 12 times faster. ] € >
compute the continuous Haar transform (CHT) coefficients instead.

By using techniques borrowed from computational geometry to
compute the inner products with the CHT basis functions, we are
able to massively prune the transform flow-diagram in addition to
avoiding sampling completely. This leads to a dramatic decrease
The Haar transform (HT) is often a tool of choice in image of the computational load when the number of vertices is small.
processing due to its edge detection property, low complexity andve call this new algorithm pruned continuous Haar transform
the simplicity of its implementation. It is particularly suited for (PCHT). The outputs of the DHT and the PCHT are identical for
piecewise constant functions that have a very sparse and accura® polygonal patterns. The PCHT was concretely implemented in
representation in the Haar domain. An important class of two-a lithography tool and proved to have significantly lower runtime
dimensional (2D) piecewise constant functions is the class otompared to the DHT for the particular case of rectilinear polygons
functions described by a union of disjoint polygonal subsets offrom VLSI design layouts.
R?. Such a description is often used in different areas of image The main contribution of this work is PCHT, a fast algorithm,
processing such as contour detection, segmentation, tomograplnd to the best of our knowledge the first of its kind for the CHT of
image reconstruction [1] or for VLSI layouts description [2]. A 2D piecewise constant polygonal patterns. Its efficiency compared
polygonal shape is usually described by an ordered list of itgo the DHT for the case of VLSI layouts is demonstrated with
vertices. This description has the advantage of being very compagfotential high impact for pattern matching techniques envisioned
and natural to understand. Many algorithms in computationain computational lithography.
geometry make efficient use of this description to solve various |y Section II, we will first briefly introduce the signal model
problems like intersections of polygons, area computations Ofye consider, namely 2D piecewise constant polygonal patterns. In
point inclusion [3]. However, this description has no fixed length gection 111, we give a reminder on the 1D and 2D Haar transform
which makes it more cumbersome for use in other applications ifyhjle Section IV presents the PCHT algorithm. The results of the

image processing including machine learning, pattern matching ogpplication to VLSI design layouts are given in Section V and we
measuring similarity. The Haar transform provides such a fixed¢gnclude in Section VI.

length representation.

Optical lithography is the process that allows mass production
of VLSI circuits [4]. The HT has been used so far in lithogra-
phy to compress the Fourier precompensation filters for electron The signal model we consider is one of 2D piecewise constant
beam lithography [5] and also to regularize the obtained mask irpolygonal patterns. This is the class of images described by the
inverse lithography [6]. More recently, Kryszczuk et al. introduced union of a finite number of disjoinsimple polygonsMathemati-
the direct printability prediction of VLSI layouts using machine cally, a polygon is described by a set of points called vertices. A
learning techniques [7]. They use fixed-length feature vectorgpolygon? C R? is typically defined by its boundary, which is a
from orthogonal transforms and train a classifier to predict thecollection of straight segments, called edges. The polygon contains
printability of VLSI layouts without having to go through the all the points inside the boundary. The description of a polygon is
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I. INTRODUCTION

II. SIGNAL MODEL
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Figure 1. Example of polygons. Polygon A is a simple polygorlygan
B is a rectilinear polygon such as those found in VLSI layouts

the list of its K vertices, ordered clockwise:

{(x0,%0),.. ., (x-1,yx-1)}, (zi,y:) € R®.

CO,O

XO,O

Figure 2. A pruned signal flow of the 1D CHT. The full flow-diagn is
shown in light grey. The signal transformed f$t) = u(t — 3), defined
on [0, 8), whereu(t) is the Heaviside functionX; ,, = <f, cpj,k> and

Cir = <f7 ¢j,k>-

where any two successive vertices describe one edge of the bound-
ary. In addition, simple polygons have the property that no two

edges intersect each other. A subclass of simple polygons term%l
rectilinear comprises all those with only right angles and is the
building block of VLSI layouts. An example of such polygons is

shown in Figure 1.
A 2D piecewise constant polygonglattern is described by

a collection of M disjoint polygons each with an associated

weight {(P;, w;)} 5" and with disjoint interiors, i.elnt (P;) N
Int (P;) = 0 Vi # j, whereInt(P) is the interior of polygorP,
andw; € R. Finally the continuous image model is
M—1
Flay) = wilp,(z,y) (1)
=0
where we use an indicator functiohe(z,y) = 1 if (x,y) € P
and O otherwise.

Ill. THE HAAR TRANSFORM

The 1D Haar basis is an orthonormal basis|@r"), composed
of the family of functions

T T
{‘Pé,o)v ](',k>

where

jGNk:Q”q?fl}
J
<T)()7 _ 22

t 2% 2jt k th k
Pjk —\/TSO Tt ) JT Tt .

The functionsy and+ are respectively defined as

0]

1 ifo<t<g
-1 if3<t<1.
0 otherwise

fo<z<l1

1
Pl) = {0 otherwise V(o) =

herej € N is the scale and, k, € {0,...,27 — 1} the shifts
in the z and y directions respectively. Similarly, we g&tﬁlk}

ndzp;?,;;)’ku. The first and second letter in the superscript indicate
which basis function is used far andy directions respectively;
and! indicatey and p respectively.

Given the basis functions defined in (2) and (3), we derive the
Haar transform as the inner product between the funcfioto
transform and the Haar basis functions. Using fif¢T") and the
I2(T') inner products, with a discretized tile and discretized basis
functions, we respectively get the dyadic continuous and discrete
transforms [8]. The CHT and DHT coefficients are identical for
2D piecewise constant polygonal patterns.

Both the CHT and the DHT can be computed using the
fast orthogonal wavelet transform (FWT) [9]. This algorithm is
constructed using the two-scale relationships that link the basis
functions at different scales:

P(t) = V2D gnp(2t—n), () = V2 hap(2t —n),

where g,, and h,, are the taps of two discrete-time filters [8].
The Haar filters are defined ag, = [27/2 27'/?] and h,, =
[271/2 —27Y/2]. This results in a Cooley-Tukey butterfly structure
[10] where only the inner products with the scaling function at the
lowest level need be computed. The full flow diagram for a length-8
1D transform is shown in light grey in Figure 2.

Using the separability of the 2D transform and the two-scale re-
lationships, we obtain the relations between the 2D basis functions

of the different scales. For examp@;f‘,f;’ k, can be written as

As the 2D Haar basis is separable, we can define it in terms of

the 1D basis. Now we want to work over a surfé€e= [0, T,) x
[0,T,) we call a tile. The scaling function is given by:

(Tz)

ik ky (T,Y) = kam(I)wgii)(y), 2

wﬁhkliky (z,y) = Z Z A Gm @412k 4+, 2ky +m (T, )

By replacing hn g, in the sum byg.gm, gnhm and hyph,, we

. . . : lh hh . .
wherej = k, = k, = 0. The other basis functions are given by obtainy; k., 1/)](,61),% and w;,,@j x, respectively. As in the 1D

the possible combinations of and ), one of them being:

6™ (@) = v @) ), @

case, these relations induce a 2D butterfly structure. Therefore
transform coefficients can be computed as a linear combination
of inner products with the scaling function at different scales.
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— = Algorithm 1 PCHT(P, j, kx, ky, 5)
'I‘ Require: The polygon to transfornP, the scalej, the shiftsk,,
andk, and the scaling factas.
I Ensure: C"D ¢ c(Ph) contain the transform coefficients.
. i « IntersectionAredP, T k, k, )
cifi=0o0ri=T.T,/2% orj=J then

Returnsi
end if
@ — PCHT(P, j + 1, 2ky, 2k,, 25)
y — PCHT(P,j + 1,2k, + 1, 2ky, 25)
: 2z PCHT(P,j + 1, 2k, 2k, + 1, 25)
it «— PCHT(P,j + 1,2k + 1,2ky + 1,25)
A. Algorithm Derivation a—z—y
Let us consider the FWT described in Section Ill. First, using10: b — = +y
the signal model from (1) and the linearity of the inner product, 11: ¢ < 2z —1
we can decompose the transform into a sum of inner products o#2: d — z + 1

Figure 3. From left to right: Examples of 1024mri024nm tiles from
respectively M1, M2 and CA layers.

IV. PRUNED CONTINUOUS HAAR TRANSFORM

©ONDARWODN

hl hl
individual polygons with basis functions: 13: Cj(',ki,k:y — Cj(klky +s(a+c)
M—1 14: CJ(ZZT) ky Cj(l:) key +s(b—d)
hh) hhy
(f, Cikaky) = Z wi (1P, , jkyky ) - 15: Cj(',km),ky — Cj(',km),ky +s(a—c)
i=0 16: Returnb + d

Thus, from now on we consider only the transform of a single
polygon. The second idea is to use computational geometry tech-
niques to compute the inner product. The continuous inner produdor rectilinear polygons from classical computational geometry
between the indicator of a polygon and the scaling function is theechniques [3].
area of the geometrical intersection of the polygon and the support we implemented the PCHT and DHT algorithms in a compu-
of the scaling function, multiplied bg’//T:T),. tational lithography tool that we ran on a 3GHz Intel Xeon 5450
The Haar transform acts as a discontinuity detector and all theunning Linux in 64-bit mode. All the code is C++, single-threaded
transform coefficients will be zero except for basis functions thatand was compiled using GCC 4.1.2 with option “-O3". The DHT
intersect the boundary of the polygon. As a consequence, th@as custom implemented taking into account the knowledge that
basis functions completely inside or outside a polygon yield athe input image is binary. For both transforms the output coeffi-
zero inner product. Moreover, all the coefficients below such acients were discarded instead of being stored in order to minimized
basis function in the transform tree are also zero (see Figure 2}he impact of memory transfers on the runtime measurements. We
Therefore the transform can be written as a divide-and-conquefan a benchmark of the PCHT and the DHT on different layers of a
algorithm. Divide the tile in four rectangular parts recursively until 22nm VLS| layout. Layers M1 and M2 are metal layers that contain
the part considered is completely inside or outside the polygonpoth rectangles and other polygons, while the contact array (CA)
Pseudocode for the PCHT is given in Algorithm 1, in which |ayer contains only rectangles. Examples of tiles from the different
Tjkoey = [kaTn /27, (ko +1)Ty/27) % [kyTy /27, (ky+1)T,/27)  layers are shown in Figure 3. Figure 4 shows the runtime as a
is the support ofp; «, k. An example of the pruned transform fynction of the number of vertice®& in 1024nmx1024nm tiles
flow-diagram for the 1D case is shown in black in Figure 2. Infrom the M1 layer, the worst configuration for the PCHT in our
order to compute all the transform coefficients, the algorithm isexperiment. The empirical distribution of the number of vertices

called in the following way: in the tiles is shown in light grey. Although the runtime of the
M—1 continuous transform grows witli, it outperforms its discrete
X0.0.0 = So Z w; PCHT (P;,0,0,0, sow;) counterpart for about half the tiles. The peaks arodid= 190
i—0 are caused by the very low number of tiles in that range, as shown

by the empirical distribution, and all these tiles having a worse than
where X; i, k, = (f, @ik k,) andso = 1//T.T,. The average runtime. The DHT also shows a slight dependenck on

transform coefficients aré'j‘jijky = <f’ ¢;a;2k,> due to the time needed to create the discrete image. The average
' ' speed-up of the runtime as a function of the tile size is shown
V. APPLICATION TOVLSI LAYoUTS in Figure 5. The speed-up is defined as the ratio of the runtimes

We now show a practical example of the application of thisof the DHT and pruned CHT. Because it has the highest vertex
algorithm to compute the CHT coefficients of a VLSI layout. density, the M1 layer shows the least improvement, between 1 and
In practice a layout is described using a vector format such a8 times speed-up. For large tiles, layers M2 and CA show speed-up
OASIS [2]. Compared to general simple polygons, those foundover 6 and 12 times, respectively. In a practical scenario where the
in VLSI layouts have two additional properties. All vertices are output coefficients need to be stored for further use we expect the
placed on the integer grid and all edges are parallel to either the PCHT to outperform even more the DHT as its pruned structure
or y axis. We call these polygons rectilinear. The routine used toavoids completely the computation of zero coefficients and thus
compute the intersection area in Algorithm 1 is specifically adaptedheir storage and associated memory transfers. On the other hand,
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Figure 4. Median runtime of the PCHT (dashed line) and DHTifpla Figure 5

line) of 1024nmx1024nm tiles from the M1 layer containing vertices.
Tiles with K > 200 have a lower runtime because they contain exclusively
rectangles which are less complex. The empirical distribputiothe number

of vertices is shown in grey.

the DHT has no knowledge of which coefficients will be zero and
thus either tries to store every output coefficients or an if statement[z]
can be used if we know in advance that most coefficients will be
zero, as is the case here. In addition, further optimizations such as
parallelization and optimization for the cache size are possible.

VI. CONCLUSIONS (3]

We introduced the PCHT, a new algorithm for the computation
of the CHT of 2D polygonal patterns. We showed significant speed- [4]
up compared to the DHT in an implementation targeting rectilinear
polygons found in VLSI layouts. We expect the PCHT to impact
machine learning techniques being developed for application in [5]
computational lithography, such as printability prediction [7], as
well as in the VLSI design process in general.

The natural next step for our work would be to analyze the
computational complexity of PCHT in order to validate theoret-
ically its superiority over the DHT. The performance of both
algorithms implementations should also be reassessed when thgs]
coefficients are stored in memory in order to account for the impact
of memory transfers. Another important implementation step is
the parallelization of the code as current and future increases in
computation power come primarily through multi-core chips. The [
recursive nature of the PCHT algorithm makes it a perfect candidate
for parallelization.

We also intend to apply our vertex based approach to other
transforms such as the continuous Fourier series. A fast algorithmg)
to compute the Fourier series would also be very valuable in
lithography where the fast Fourier transform is routinely used in
optical lithography process simulation despite the introduction of
aliasing due to the infinite bandwith of the polygons. Moreover, [9]
we expect an optimized vertex based fast continuous Fourier series

algorithm to be inherently faster than the fast Fourier transform. [10]
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