
Computing Exact Fourier Series Coefficients of IC Rectilinear
Polygons from Low-Resolution Fast Fourier Coefficients

Robin Scheiblera, Paul Hurleyb*

abIBM Research, Zurich

ABSTRACT

We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose
description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware
components.

Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of
the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to
a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask
transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative
factor.

The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling repre-
senting the mask function exactly. Computationally, this leads to significant saving by allowing to choose the
maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy.

In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier
optics. We show that in some cases this can make a significant difference, especially in modern very low pitch
technology nodes.

Keywords: Fourier transform, optical lithography, aliasing, FFT, DFT, continuous Fourier Series

1. INTRODUCTION

Pupil Function

Eigenvector

decomposition

Fourier

Transform

Fourier

Transform
Inverse

Fourier

Transform
Σ

Resist Model Etching Model
Printed Image

Simulated

Optical Model

Mask Transmission Function

Conjugate

Source Shape

Figure 1. Details of the print simulation of a given IC mask layout.

The calculation of the Fourier representation of IC layers is a crucial part in print simulation of modern
optical lithography (as shown in Figure 1), and in mask optimization procedures such as model-based optical

*pah@zurich.ibm.com



proximity correction (OPC) or source-mask optimization (SMO). Other uses of the FFT include the computation
of a pre-compensation filter to reduce proximity effects,1 and approximating the diffraction orders of the mask.2

There are presently essentially two approaches to computing the Fourier representation of the mask trans-
mission function.

The first is to compute the exact Fourier series directly from the polygon vertices of the polygons. Done
naively, the complexity grows as O(MN) where M is the number of vertices and N the number of frequency
points to compute – no longer tractable for modern IC layouts. In addition, the computation usually requires a
custom implementation and considerable time and effort to make it computationally efficient.

The second, and most common way, is to sample the mask transmission and compute its discrete Fourier
transform (DFT) coefficients. The advantage over the first method is that efficient FFT algorithms can be
deployed, for which extremely optimized libraries and hardware are readily available. The main drawback is
sampling the mask introduces aliasing, with the coefficients computed no longer corresponding to the original
polygons. Circumventing this requires oversampling, thus increasing the size of the DFT to compute.

An alternative is the method as outlined in,3 which calculates the Fourier series accurately using a fast
algorithm, combining direct computation together with FFT methods. That work is also a good source of details
previous work in continuous Fourier series for polygons.

Figure 2. Aliasing through the use of sampling and DFT can lead to erroneous conclusions. From left to right: original,
estimated image using DFT, estimated image using exact methods. (light wavelength 193nm, NA=1.44, pitch 22nm,
simple thresholding used to simulate photoresist, sampling rate for FFT at pitch)

Using the DFT directly as the representation of an image can have unfortunate consequences. In the simple
simulation shown in Figure 2, the DFT result would lead one to draw to the wrong conclusion.

In many circumstances, the true Fourier series coefficients, when presented with the FFT coefficients, would
be desired. It turns out this is not necessarily a lossy process. The primary contribution of this paper is to (a)
show that this is possible under certain circumstances, and, (b) provide the algorithm to do this.

Section 2 provides the context in which the algorithm is performed. Then, in Section 3 we describe how the
algorithm works. mathematical justification for the algorithm is provided. Finally Section 4 concludes.

2. SETUP

We consider the transformation over a rectangular subset T = [0, Tx) × [0, Ty), Tx, Ty ∈ N, which we call a
tile. In the context of semiconductor manufacturing process, this tile may consist of the entire layer or a (small)
subsection thereof. In many practical situations, the layer will be divided up into individual tiles.

A rectilinear polygon P contained in the tile is a subset of the tile whose boundaries are parallel either to
the x-axis or the y-axis. A polygons is described by the ordered list of its K vertices:

{(x0, y0), (x1, y1), . . . , (xK−1, yK−1)} , (xi, yi) ∈ Z2.

We assume the vertices of the polygon are ordered clockwise as illustrated in Fig. 3.

In IC design, the polygons contained in the tile are non-overlapping, and thus the mask transmission function
can be defined as the sum of the indicator function of the different polygons P0, . . . ,PM−1 ⊆ T :

fT (x, y) =

M−1∑
i=0

1{(x,y)∈Pi}.



�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

5 10 151

1

5

10

y

x

Figure 3. Example of a rectilinear polygon.

2.1 Sampling

The discrete image is done essentially by sampling f(x, y) on a regular grid. We choose the grid in order to
minimize the size of the discrete image created and such that every polygon can be represented as an integer
number of pixels. Let a pixel be of size px × py where px is the greatest common divider (GCD) of Tx and
the x-coordinates of the polygons’ vertices and respectively py is the GCD of Ty and the y coordinates of the
polygons’ vertices. Then, the discrete image is given by:

f̂T [m,n] = fT (pxm, pyn)
m = 0, . . . , Nx − 1
n = 0, . . . , Ny − 1

where Nx = Tx

px
and Ny =

Ty

py
.

3. ALGORITHM

Sampling FFT

LUT

Scaling

Ψ
k,l

k,l
F

x
T

y
T

P
1

P
2

P
0

...
Figure 4. A block diagram of the algorithm. LUT stands for lookup table.

An outline of the three steps of the algorithm, as shown in Fig. 4, is as follows:

1. Sampling: Choose px and py and sample the polygons as described to obtain f̂T [m,n].

2. FFT: Compute the 2D FFT,F̂k,l = FFTk,l

{
f̂T [m,n]

}
.

3. Scaling: Obtain the needed Fourier series coefficients Fk,l of f(x, y) using Fk,l = Ψk,lF̂k,l, where the scaling
factor is given by Ψk,l = βe−jθ and

β = pxpy sinc

(
k

Nx

)
sinc

(
l

Ny

)
and θ = π

(
k

Nx
+

l

Ny

)
.

where sinc(x) = sin(πx)
πx .



p
2

p
1

z
r

z
i

p
3

q
i

q
r

+

+

+

−

Figure 5. A possible implementation of the scaling step. The indices r and i denote respectively real and imaginary parts.
The output q = βe−jθz. It is assumed that p1, p2 and p3 are stored in a lookup table.

The sampling and FFT have standard, well-known hardware implementations. The scaling factor can be
written as:

Ψk,l = βe−jθ , β = pxpy sinc

(
k

Nx

)
sinc

(
l

Ny

)
and θ = π

(
k

Nx
+

l

Ny

)
.

Thus in practice, the multiplication of a complex number z by Ψk,l can be implemented using only three additions
and three multiplication, as described in.4

p1 = β(cos θ − sin θ) p2 = −β(cos θ + sin θ) p3 = β cos θ

s1 = <e{z}+ =m{z}
m1 = s1p3 m2 = p1=m{z} m3 = p2<e{z}

<e
{
βe−jθz

}
= m1 −m2 =e

{
βe−jθz

}
= m1 +m3

where the values p1,p2 and p3 are precomputed and stored in a lookup table. In hardware, this can be implemented
using simple logic or a dedicated circuit. such as the one from Fig. 5. Alternatively, one can use a CORDIC
unit performing multiplication by a scalar and vector rotation in a single step or only vector rotation and use
two multiplications in addition to the multiplication by β.5 In that case, only β and θ need to be stored in the
lookup table.

Fig. 6 shows an example for a simple mask transmission function together with a comparison to known
solutions.

4. CONCLUSIONS

We demonstrated a new algorithm to compute the continuous Fourier series of mask transmission function in
optical lithography. Our approach is based on the standard discrete Fourier transform followed by a frequency-
dependent multiplication step.

The proposed algorithm allows significant computational saving in many cases while the use of the continuous
Fourier series circumvents the accuracy limitations of the traditionally used discrete Fourier transform.

In addition, the simple structure of the algorithm make it suitable for software or hardware implementation
using off-the-shelf highly optimized existing libraries or architectures.

APPENDIX A. MATHEMATICAL DERIVATION

Let f(x, y) be the indicator function of M non-overlapping rectilinear polygons living in a tile T = [0, Tx)×[0, Ty).
The coordinates of the polygons are:

M−1⋃
i=0

{(xi,j , yi,j)}Ki−1
j=0 , xi,j ∈ {0, . . . , Tx} , yi,j ∈ {0, . . . , Ty} ,



py = GCD(2,4,6,8,14,16) = 2

Π

px = GCD(4,8,12,16) = 4

= {(4,2),(4,14),(8,14),(8,8),(12,8),(12,6),(8,6),(8,4),(12,4),(12,2)}

Minimal size

2x Oversampling

8x16 discrete image

FFT
8x16

4x8
FFT

SAMPLING

4x8 discrete image

0 16
0

16

Maximum Pixel Size:

Original 16x16

Fourier Series using Goertzel (1)

Fourier Series using FFT (invention)

2560

4480

832

#operationsSolution

Discrete Fourier Transform using FFT (2)

Output from
known
solution 2

Continuous Mask
Transmission Function

Algorithm output

Π

Polygon:

Lookup Table

Figure 6. An example of the algorithm along with the known solution. The complexity is given for the example in number
of operations.

where Ki is the number of vertices of the ith polygon. We now choose px, py ∈ N such that:

xi,j = pxx̃i,j , x̃i,j ∈ N, ∀i, j and yi,j = py ỹi,j , ỹi,j ∈ N, ∀i, j
Tx = pxNx, Nx ∈ N and Ty = pyNy, Ny ∈ N (1)

It is easy to see that we can always find such numbers as px = 1 and py = 1 always satisfy these relationships.
However, in the practical case we are interested in choosing px and py as large as possible, hence:

px = GCD

(
Tx,

M−1⋃
i=0

{xi,j}Ki−1
j=0

)
and py = GCD

(
Ty,

M−1⋃
i=0

{yi,j}Ki−1
j=0

)
where GCD(a, b, . . . ) gives the greatest common divider of all the number in argument. Let us now define the
pixel function:

ψ(x, y) =

{
1 if 0 ≤ x < px and 0 ≤ y < py
0 otherwise

.

Finally it is possible to define the sampled version of f(x, y):

f̂ [m,n] = f (mpx, npy) ,
m = 0, . . . , Nx − 1
n = 0, . . . , Ny − 1

If the relations of Eq. (1) are respected, then we have the following relationship between f(x, y) and f̂ [m,n]:

f(x, y) =

Nx−1∑
m=0

Ny−1∑
n=0

f̂ [m,n]ψ (x−mpx, y − npy) (2)

In order to compute the Fourier series coefficients of this expression, we need to make f and ψ periodic of period
Tx and Ty in the x and y direction respectively. Thus, the 2D Fourier series coefficients can be computed as:

F {f} =

Tx∫
0

Ty∫
0

f(x, y)e−j(wxkx+wyly) dx dy



where wx = 2π
Tx

and wy = 2π
Ty

. We can now plug Eq. (2) into this:

F {f} =

Tx∫
0

Ty∫
0

Nx−1∑
m=0

Ny−1∑
n=0

f̂ [m,n]ψ (x−mpx, y − npy) e−j(wxkx+wyly) dx dy

We will now use the following relation:

e−j(wxkx+wyly) = e−j(wxk(x−mpx)+wyl(y−npy))e−j(wxkmpx+wylnpy) = e−j(wxku+wylv)e
−j2π

(
km
Nx

+ ln
Ny

)
(3)

where we used the substitution u = x−mpx and v = y − npy. Hence it becomes:

F {f} =

Nx−1∑
m=0

Ny−1∑
n=0

f̂ [m,n]e
−j2π

(
km
Nx

+ ln
Ny

) Tx−mpx∫
−mpx

Ty−npy∫
−npy

ψ(u, v)e−j(wxku+wylv) du dv

(a)
=

Nx−1∑
m=0

Ny−1∑
n=0

f̂ [m,n]e
−j2π

(
km
Nx

+ ln
Ny

) Tx∫
0

Ty∫
0

ψ(u, v)e−j(wxku+wylv) du dv

 = DFT
{
f̂
}
F {ψ} (4)

where we used in (a) the periodicity of ψ(x, y) to remove the dependency of the integral on m and n.

The only thing left to do now is compute the value of Ψk,l = Fk,l{ψ}. But first, note that ψ can be written

ψ(x, y) = rectpx

(
x− px

2

)
rectpy

(
y − py

2

)
where rectB(t) =

{
1 if −B2 ≤ t <

B
2

0 otherwise
(5)

and if we periodize it with period T , the corresponding Fourier series is given by:

Fk {rectB} = B sinc

(
k

T
B

)
=

sin
(
π kT B

)
π kT

If in addition we use the delay property and the separability of the Fourier series, we obtain

Ψk,l = px sinc

(
k

Tx
px

)
e−j2π

k
Tx

px
2 py sinc

(
l

Ty
py

)
e
−j2π l

Ty

py
2 = px sinc

(
k

Nx

)
e−jπ

k
Nx py sinc

(
l

Ny

)
e
−jπ l

Ny

In conclusion we showed that the Fourier series of f(x, y) can be expressed in terms of the DFT of f̂ [m,n]:

Fk,l = Ψk,lF̂k,l

where Fk,l = Fk,l {f} and F̂k,l = DFT
{
f̂
}

=
Nx−1∑
m=0

Ny−1∑
n=0

f̂ [m,n]e
−j2π

(
km
Nx

+ ln
Ny

)
.

REFERENCES

1. D. G. L. Chow, J. F. McDonald, D. C. King, W. Smith, K. Molnar, and A. J. Steckl, “An image processing
approach to fast, efficient proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B:
Microelectronics and Nanometer Structures 1, pp. 1383–1390, Oct. 1983.

2. A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, A. K. K. Wong, and C. J.
Progler, “Optimum mask and source patterns to print a given shape,” in Proc. SPIE, 4346, pp. 486–502,
Sept. 2001.

3. R. Scheibler, P. Hurley, and A. Chebira, “Fast continuous Haar and Fourier transforms of rectilinear polygons
from VLSI layouts,” arXiv:1010.5562v1 , 2010.

4. H. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer series in information sciences,
Springer-Verlag, 1981.

5. P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of CORDIC: Algorithms,
architectures, and applications,” Circuits and Systems I: Regular Papers, IEEE Transactions on 56, pp. 1893
–1907, Sept. 2009.


	Introduction
	Setup
	Sampling

	Algorithm
	Conclusions
	Mathematical Derivation

