
A Fast Hadamard Transform for Signals with Sub-linear Sparsity

Robin Scheibler, Saeid Haghighatshoar and Martin Vetterli
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Email: {robin.scheibler, saeid.haghighatshoar, martin.vetterli}@epfl.ch

Abstract—A new iterative low complexity algorithm has
been presented for computing the Walsh-Hadamard transform
(WHT) of an N dimensional signal with a K-sparse WHT,
where N is a power of two and K = O(N↵

), scales sub-
linearly in N for some 0 < ↵ < 1. Assuming a random
support model for the nonzero transform domain components,
the algorithm reconstructs the WHT of the signal with a
sample complexity O(K log2(

N
K)), a computational complex-

ity O(K log2(K) log2(
N
K)) and with a very high probability

asymptotically tending to 1.
The approach is based on the subsampling (aliasing) property

of the WHT, where by a carefully designed subsampling of the
time domain signal, one can induce a suitable aliasing pattern
in the transform domain. By treating the aliasing patterns
as parity-check constraints and borrowing ideas from erasure
correcting sparse-graph codes, the recovery of the nonzero
spectral values has been formulated as a belief propagation (BP)
algorithm (peeling decoding) over an sparse-graph code for the
binary erasure channel (BEC). Tools from coding theory are
used to analyze the asymptotic performance of the algorithm
in the “very sparse” (↵ 2 (0, 1

3]) and the “less sparse” regime
(↵ 2 (

1
3 , 1)).

I. INTRODUCTION

The discrete Walsh-Hadamard transform (WHT) is a well-
known signal processing tool with application in areas as dis-
parate as image compression, designing spreading sequences
in multi-user transmission in cellular networks (CDMA),
coding, spectroscopy as well as compressed sensing [1].
Its recursive structure, similar to the fast Fourier transform
(FFT) algorithm for computing the discrete Fourier trans-
form (DFT), allows a fast computation with a complexity
O(N log2(N)) in the dimension of the signal N [2], [3].

A number of recent publications have addressed the par-
ticular problem of computing the DFT of an N dimensional
signal which is K-sparse in the frequency domain [4], [5],
[6]. In particular, it has been shown that the already known
computational complexity O(N log2(N)) belonging to the
FFT algorithm can be strictly improved. Such algorithms
are generally known as sparse FFT (sFFT) algorithms. The
authors in [7] by extending the results of [6], gave a very
low complexity algorithm for computing the 2D-DFT of
a
p

N ⇥
p

N signal. In a similar line of work, based on
the subsampling property of the DFT in the time domain
resulting in aliasing in the frequency domain, the authors in

The research of Robin Scheibler was supported by ERC Advanced
Investigators Grant: Sparse Sampling: Theory, Algorithms and Applications
SPARSAM no. 247006

[8], [9] developed a novel low complexity iterative algorithm
to recover the non-zero frequency elements using ideas from
sparse-graph codes.

In this paper, we first develop some of the useful properties
of the WHT, specially the subsampling and the modulation
property that are of vital importance for developing the
recovery algorithm. In particular, we show that subsampling
in the time domain allows to induce a well-designed aliasing
pattern over the transform domain components. In other
words, it is possible to obtain a linear combination of a con-
trolled collection of transform domain components (aliasing),
which creates interference between the nonzero components
if more than one of them are involved in the induced linear
combination. Similar to [9] and borrowing ideas from sparse-
graph codes, we construct a bipartite graph by considering
the nonzero values in the transform domain as variable nodes
and interpreting any induced aliasing pattern as a parity check
constraint over the variables in the graph. We analyze the
structure of the resulting graph assuming a random support
model for the nonzero coefficients in the transform domain.
Moreover, we give an iterative peeling decoder to recover
those nonzero components. In a nutshell, our proposed sparse
fast Hadamard transform (SparseFHT) consists of a set of
deterministic linear hash functions (explicitly constructed)
and an iterative peeling decoder that uses the hash outputs to
recover the nonzero transform domain variables. It recovers
the K-sparse WHT of the signal in sample complexity
(number of time domain samples used) O(K log2(

N
K)), total

computational complexity O(K log2(K) log2(
N
K)) and with

a high probability approaching 1 asymptotically.

Notations and Preliminaries: For an integer m, the set
of all integers {0, 1, . . . , m� 1} is denoted by [m]. We use
the small letter x for the time domain and the capital letter
X for the transform domain signal. For an N dimensional
real-valued vector v, with N = 2n, the i-th component of v
is interchangeably represented by vi or vi0,i1,...,in�1 , where
i0, i1, . . . , in�1 denotes the binary expansion of i with i0
and in�1 being the least and the most significant bits. F2

denotes the binary field consisting of {0, 1} with summation
and multiplication modulo 2. We also denote by Fn

2 the space
of all n dimensional vectors with the addition of the vectors
done component wise over F2. The inner product of two
binary vectors u, v 2 Fn

2 is defined by hu , vi =
Pn�1

t=0 utvt

with arithmetic over F2.

II. MAIN RESULTS

For a signal X 2 RN , the support of X is defined as
supp(X) = {i 2 [N] : Xi 6= 0}. The signal X is called
K-sparse if | supp(X)| = K, where for a set A ⇢ [N], |A|
denotes the cardinality or the number of elements of A. For a
collection of N dimensional signals SN ⇢ RN , the sparsity
of SN is defined as KN = maxX2SN | supp(X)|.

Definition 1. A class of signals of increasing dimension
{SN}1

N=1 has sub-linear sparsity if there is 0 < ↵ < 1
and some N0 2 N such that for all N > N0, KN N↵.
The value ↵ is called the sparsity index of the class.

Theorem 1. Let 0 < ↵ < 1, N = 2n and K = N↵. Suppose
x 2 RN is a time domain signal with a WHT X 2 RN .
Assume that X is a K-sparse signal in a class of signals
with sparsity index ↵ whose support is uniformly randomly
selected among all possible

�N
K

�
subsets of [N] of size K.

For any value of ↵, there is an algorithm that can compute
X and has the following properties:

1) Sample complexity: The algorithm uses CK log2(
N
K)

time domain samples of the signal x. C is a function
of ↵ and C (1

↵ _
1

1�↵) + 1 for all ↵ 2 (0, 1), where
for a, b 2 R+, a_ b denotes the maximum of a and b.

2) Computational complexity: The total number of op-
erations in order to successfully decode all the nonzero
spectral components or announce a decoding failure is
O(CK log2(K) log2(

N
K)).

3) Success probability: The algorithm correctly com-
putes the K-sparse WHT X with a very high prob-
ability asymptotically approaching 1 as N tends to
infinity, where the probability is taken over all random
selections of the support of X .

III. WALSH-HADAMARD TRANSFORM AND ITS
PROPERTIES

Let x be an N = 2n dimensional signal indexed with
elements m 2 Fn

2 . The N dimensional WHT of the signal x
is defined by

Xk =
1p
N

X

m2Fn
2

(�1)hk , mixm,

where k 2 Fn
2 denotes the corresponding binary index of

the transform domain component. Throughout the paper, bor-
rowing some terminology from the DFT, we call transform
domain samples Xk, k 2 Fn

2 frequency or spectral domain
components of the time domain signal x.

A. Basic Properties

In this section, we give some of the basic properties of the
WHT without a proof.

(0,0,0) (0,1,0)

(1,0,1)

(1,1,1)(1,1,0)(1,0,0)

(0,0,1) (0,1,1)

(0,0,0) (0,1,0)

(1,0,1) (1,1,1)

(1,1,0)
(1,0,0)

(0,0,1) (0,1,1)

WHT

Fig. 1: Illustration of the Downsampling property on a
hypercube.

Property 1 (Shift/Modulation). Let Xk be the WHT of the
signal xm and let p 2 Fn

2 . Then

xm+p
WHT ! (�1)hp , kiXk.

Property 2 (Permutation). Let ⌃ 2 GL(n,F2). Assume that
Xk is the WHT of the time domain signal xm. Then

x⌃m
WHT ! X⌃�T k.

For an N = 2n dimensional signal x with the binary
indexing xm0,m1,...,mn�1 , the subsampling along dimension
i 2 [n] is defined by freezing the i-th component of the
index to either 0 or 1. For example, x0,m1,...,mn�1 is a 2n�1

dimensional signal obtained by subsampling the signal xm

along the first index.

Property 3 (Downsampling/Aliasing). Suppose that x is a
vector of dimension N = 2n indexed by the elements of Fn

2

and assume that B = 2b, where b 2 N and b < n. Let

 b =
⇥
0b⇥(n�b) Ib⇥b

⇤T
, (1)

be the subsampling matrix freezing the first n�b first indices
to 0. If Xk is the WHT of x, then

x bm
WHT !

r
B

N

X

i2N(T
b)

X bk+i, (2)

where x bm is a B dimensional signal labelled with m 2 Fb
2.

Remark 1. Fn
2 can be visualized as the vertices of the n-

dimensional hypercube. The downsampling property implies
that downsampling along some of the dimensions in the
time domain is equivalent to summing up all of the spectral
components along the same dimensions. This is illustrated in
Fig. 1 for dimension n = 3.

IV. HADAMARD HASHING ALGORITHM

By applying the basic properties of the WHT, one can
design suitable hash functions in the spectral domain. The
main idea is that one does not need to have access to the
spectral values and the output of all hash functions can be
simply computed by low complexity operations on the time
domain samples of the signal.

Proposition 1 (Hashing). Assume that ⌃ 2 GL(n,F2) and
p 2 Fn

2 . Let N = 2n, b 2 N, B = 2b and let m, k 2 Fb
2

denote the time and frequency indices of a B dimensional
signal u⌃,p(m) =

q
N
B x⌃ bm+p and its WHT. Then, the

length B WHT of u⌃,p is given by

U⌃,p(k) =
X

i2Fn
2 | h⌃(i)=k

(�1)hp , iiXi,

where b is as in (1) and h⌃ is the index hashing function
defined by

h⌃(i) = T
b ⌃

T i. (3)

Proof simply follows from the Property 1, 2, and 3. Based
on Proposition 1, we give Algorithm 1 which computes the
hashed Hadamard spectrum.

Algorithm 1 FastHadamardHashing(x, N,⌃, p, B)

Require: Signal x of dimension N = 2n, ⌃, p and given
number of output bins B = 2b in a hash.

Ensure: U contains the hashed Hadamard spectrum of x.
um = x⌃ bm+p, for m 2 Fb

2.

U =
q

N
B FastHadamard(um, B).

A. Properties of Hadamard Hashing

In this part, we review some of the nice properties of the
hashing algorithm that are crucial for developing the iterative
peeling decoding algorithm to recover the nonzero spectral
values. We explain how it is possible to identify collision
between the nonzero spectral coefficients that are hashed to
the same bin and also to estimate the support of non-colliding
components.

Consider U⌃,p(k) for two cases: p = 0 and some p 6= 0.
It is easy to see that in the former U⌃,p(k) is obtained by
summing all of the spectral variables hashed to the bin k
whereas in the latter the same variables are added together
with a weight (�1)hp , ii. Let us define the following ratio test
r⌃,p(k) =

U⌃,p(k)
U⌃,0(k) . When the sum in U⌃,p(k) contains only

one non-zero component, it is easy to see that |r⌃,p(k)| = 1
for ‘any value’ of p. However, if there is more than one
component in the sum, under a very mild assumption on the
the non-zero coefficients of the spectrum (i.e. they are jointly
sampled from a continuous distribution), one can show that
|r⌃,p(k)| 6= 1 for some of the values of p. In fact, n � b
well-chosen values of p is sufficient to detect whether there
is one, or more than one non-zero components in the sum.

When there is only one Xi0 6= 0 hashed to the bin k
(h⌃(i0) = k), the result of the ratio test is precisely 1 or
�1, depending on the value of the inner product between i0

and p. In particular, we have hp , i0i = 1{r⌃,p(k)<0}, where
1{t<0} = 1 if t < 0, and zero otherwise. Moreover, if for
n � b well-chosen values of p, the ratio test results in 1 or

�1, by some extra effort, it is even possible to identify the
position of the non-zero component. We formalize this result
in the following proposition.

Proposition 2 (Collision detection / Support estimation). Let
⌃ 2 GL(n,F2) and let �i, i 2 [n] denote its columns.

1) If for all d 2 [n � b], |r⌃,�d(k)| = 1 then almost
surely there is only one nonzero spectral value in the
bin indexed by k. Moreover, if we define

v̂d =

(
1{r⌃,�d

(k)<0} d 2 [n� b],

0 otherwise,

then the index of the unique nonzero coefficient is
given by

i = ⌃�T (b k + v̂). (4)

2) If there exists a d 2 [n � b] such that |r⌃,�d(k)| 6= 1
then the bin k contains more than one nonzero coeffi-
cient.

Proof: We only give a sketch of proof. Let Ik =
{i |h⌃(i) = k} be the set of variable indices hashed to the bin
k and without loss of generality, assume that

P
i2Ik

Xi = 1.
Such {Xi}i2Ik is a solution of
2

66666664

1 · · · 1

(�1)h�1 , i1i · · · (�1)

⌧
�1 , iN

B

�

...
. . .

...

(�1)h�n�b , i1i · · · (�1)

⌧
�n�b , iN

B

�

3

77777775

2

6664

Xi1
...

XiN
B

3

7775
=

2

666664

1

±1
...

±1

3

777775
,

where the specific ± sign on the right hand side vector is
obtained from the ratio test. The left hand side matrix in
the expression above has dimension (n � b + 1) ⇥ 2n�b.
As �1, . . . , �n�b form a basis for Ik, all the columns are
different and omitting the top row, they contain all exhaustive
list of 2n�b possible vectors with ±1 elements. Thus, the
right vector is always one of the columns of the matrix,
and the position of the nonzero element can be uniquely
identified.

V. SPARSE FAST HADAMARD TRANSFORM

In this section, we give a brief overview of the main
idea of Sparse Fast Hadamard Transform (SparseFHT). In
particular, we explain the peeling decoder which recovers the
nonzero spectral components and analyze its computational
complexity.

A. Explanation of the Algorithm

Assume that x is an N = 2n dimensional signal with
a K-sparse WHT X . As H�1

N = HN , taking the inner
product of the vector X with the i-th row of the Hadamard
matrix HN gives the time domain sample xi. Using the
terminology of Coding theory, it is possible to consider the

Fig. 2: On the left, bipartite graph representation of the WHT for N = 8 and K = 3. On the right, the underlying bipartite
graph after applying C = 2 different hashing produced by plugging ⌃1, ⌃2 in (3) with B = 4. The variable nodes (•) are
the non-zero spectral values to be recovered. The white check nodes (⇤) are the original time-domain samples. The colored
squares are new check nodes after applying Algorithm 1.

Fig. 3: A block diagram of the SparseFHT algorithm in the time domain. The downsampling plus small size low complexity
FHT blocks compute different hash outputs. Delay blocks denote an index shift by �i before hashing. The collision
detection/support estimation block implements Proposition 2 to identify if there is a collision. Index i is the position of the
only nonzero spectral variable in a hash bin and it is not not valid when there is a collision.

spectral components X as variables nodes (information bits
in coding theory), where the inner product of the i-th row
of HN is like a parity check constraint on X . Thus, WHT
can be imagined as a code over a bipartite graph and the
recovery of the nonzero spectral values can be interpreted as
a decoding problem over this bipartite graph. The bipartite
graph for WHT is a complete graph because any variable
node is connected to all of the check nodes as depicted in
the left part of Fig. 2 for the nonzero spectral components
{X1, X8, X11}.

For codes on bipartite graphs, there is a collection of
low complexity belief propagation algorithms performing
well under the sparsity of the underlying bipartite graph.
Unfortunately, the graph corresponding to WHT is dense,
and probably not suitable for any of these belief propaga-
tion algorithms to succeed. As explained in Section IV, by
subsampling the time domain signal, it is possible to hash
the spectral components in different bins as depicted for the
same signal X in the right part of Fig. 2. The advantage of
the hashing must be clear from this picture. The idea is that
hashing ‘sparsifies’ the underlying graph. It is also important
to notice that in the bipartite graph induced by hashing, one
can obtain all of parity check values (hash outputs) by using
low complexity operations on a small subset of time domain
samples as explained in Proposition 1 and Algorithm 1.

We propose the following iterative algorithm to recover the
nonzero spectral variables over the bipartite graph induced

by hashing. The algorithm first tries to find a degree one
check node. Using the terminology of [9], we call such a
check node a singleton. Notice that from Proposition 2, this is
doable. Further, the algorithm is able to find the position and
the value of the corresponding nonzero component, thus the
algorithm can subtract (peel off) this variable from all other
check nodes that are connected to it. In particular, after this
operation the corresponding singleton check node gets value
zero. Equivalently, we can update the underlying graph by
removing the mentioned variable node from the graph along
with all the edges connected to it. This creates an isolated
(degree zero) check node called a zeroton. Notice that by
removing some of the edges from the graph, the degree of
the associated checks decreases by one, thus there is a chance
to find another singleton.

The algorithm proceeds to peel off a singleton at a time
until all of the check nodes are zeroton (decoding succeeds)
or all of the remaining check nodes have degree greater than
one (we call them multiton), where the algorithm fails to
identify all of the nonzero spectral values.

B. Complexity Analysis

Figure 3 shows a full block diagram of the SparseFHT
algorithm. Using this block diagram, it is possible to prove
part 1 and 2 of Theorem 1 about the sample and the
computational complexity of the SparseFHT algorithm. The
last part of Theorem 1, regarding the success probability of

the algorithm, will be proved in Section VI and VII.
Computational Complexity: As we will explain in Sec-

tion VI and VII, depending on the sparsity index of the
signal ↵, we will use C different hash blocks, where C
(1

↵ _
1

1�↵) + 1, each with B = 2b different output bins.
We always select B = K to keep the average nonzero
components per bin � = K

B equal to 1. This implies that
computing the hash outputs via an FHT block of size B
needs B log2(B) = K log2(K) operations. Moreover, we
need to compute any hash output with n � b = log2(

N
B)

different shifts in order to do collision detection/support
estimation, thus the computational cost per each hash is
K log2(K) log2(

N
K). As we need to compute C different

hash blocks, the total computational complexity per each
iteration will be CK log2(K) log2(

N
K). We will explain later

that the algorithm terminates in a fixed number of iterations
independent of the value of ↵ and the dimension of the
signal N . Therefore, the total computational complexity of
the algorithm will be O(CK log2(K) log2(

N
K)).

Sample Complexity: Assuming K = B, computing each
hash with n�b different shifts needs K log2(

N
K) time domain

samples. Therefore, the total sample complexity will be
CK log2(

N
K).

VI. ANALYSIS OF THE VERY SPARSE REGIME

For the very sparse regime ↵ 2 (0, 1
3], we show that assum-

ing a random support model for nonzero spectral components
and a careful design of hash functions, it is possible to obtain
a random bipartite graph with variable nodes corresponding
to nonzero spectral components and with check nodes cor-
responding to output of hash functions. Running the peeling
decoder to recover the spectral components is also equivalent
to the belief propagation (BP) decoding over a binary erasure
channel (BEC). We also show that the error (decoding failure)
probability can be asymptotically characterized by a ‘Density
Evolution’ (DE) equation allowing a perfect analysis of the
peeling decoder. We use the following steps to rigorously
analyze the performance of the decoder in this regime:

1) We explain construction of suitable hash functions
depending on the value of ↵ 2 (0, 1

3].
2) We rigorously analyze the structure of the induced

bipartite graph and prove that it is a fully random left
regular bipartite graph.

3) We use a Density Evolution equation to asymptotically
track the ratio of unpeeled edges during the runtime of
the algorithm.

4) An expander argument is applied to show that if the
decoder peels a ratio of the edges very close to 1, it
can continue to peel off all the remaining edges with
very high probability.

A. Hash Construction

Consider those values of ↵ 2 (0, 1
3] equal to 1

C for some
integer C � 3. For ↵ = 1

C , we will consider C different

hash functions as follows. Let x be an N dimensional time
domain signal with a WHT X , where N = 2n and let b = n

C .
As we explained before, the components of the vector X can
be labelled by n dimensional binary vector from Fn

2 . Let

(i)
b = [0b⇥ib Ib⇥b 0b⇥(n�(i+1)b)]

T ,

where Ib⇥b is the identity matrix of order b and let p 2 Fn
2

be an arbitrary vector. Then the i-th subsampled signal in
the time domain is a B = 2b dimensional vector given by
x
 (i)

b

T
m+p

, where m 2 Fb
2. The WHT of the subsampled

signal, similar to Equation (2), is given by

x
 (i)

b m+p

WHT !
r

B

N

X

j2N
⇣
 (i)

b

T
⌘
X
 (i)

b k+j
, (5)

which shows that for a given k 2 Fb
2, all of the spectral

components with indices (i)
b k+ j with j 2 N

✓

(i)
b

T
◆

are

mapped to the bin number k in the resulting hash function.
Equivalent to the C different subsampling operators, we
can consider functions hi, i 2 [C] where hi(X

n�1
0) =

(Xi b, Xi b+1, . . . , Xi b+b�1). The important point is that with
this construction, the outputs of different hi depend on non
overlapping portions of the labeling binary indices. Moreover,
from Equation (5) every spectral component Xn�1

0 is hashed
to the bin labelled with hi(X

n�1
0) 2 Fb

2 in hash i.

B. Ensemble of Graphs Generated by Hashing

By the hashing scheme that we explained, there is a one-
to-one relation between an spectral element X and its bin
indices in different hashes (h0(X), h1(X), . . . , hC�1(X)).
Assume that X1, X2, . . . , XK are K independent uniformly
distributed variables in Fn

2 denoting the position of nonzero
spectral components. For these K variables and hash func-
tions hi, we can associate a bipartite graph as follows.
We consider K variable nodes corresponding to XK

1 and
C different set of check nodes S0, S1, . . . , SC�1 each of
size B = 2b. The check nodes in each Si are labelled
by elements of Fb

2. For each variable Xi, we consider C
different edges connecting Xi to check nodes labelled with
hj(Xi) 2 Sj , j 2 [C]. One can simply check that in the
resulting bipartite graph, every variable node selects its hash
bins uniformly among all possible bins, independent of the
bins selected in the other hashes and all the hash bins of the
other variables. We denote by G(K, B, C) the ensemble of
all graphs generated in this way.

1) Edge Degree Distribution Polynomial: For a graph
from the ensemble G(K, B, C), let � = K

B denote the
average number of nonzero components per a hash bin
(� = 1 in our case). As the resulting bipartite graph is left
regular, all of the variable nodes have degree C whereas for
a specific check node the degree is random and depends on
the graph realization.

Proposition 3. Let G(K, B, C) be the random graph ensem-
ble as before with � = K

B fixed. Asymptotically as N tends
to infinity the check degree converges to a Poisson random
variable with average �.

For a bipartite graph, the edge degree distribution poly-
nomial is defined by ⇢(↵) =

P1
i=1 ⇢i↵i�1 and �(↵) =P1

i=1 �i↵i�1, where ⇢i (�i) is the ratio of all edges that
are connected to a check node (variable node) of degree i.

Proposition 4. Let G be a random bipartite graph from the
ensemble G(K, B, C) with � = K

B . Then, �(↵) = ↵C�1 and
⇢(↵) converges to e��(1�↵) as N tends to infinity.

C. Performance Analysis of the Peeling Decoder

In this section, we analyze the the performance of the
peeling decoder and give further intuition about why it must
work very well in the very sparse regime. This method is
based on the analysis of BP decoder over sparse locally tree-
like graphs. The analysis is very similar to the analysis of
the peeling decoder for the recovery of the nonzero frequency
components in [9]. Consider a specific edge e = (v, c) in a
graph from the ensemble G(K, B, C). Consider a directed
neighborhood of this edge of depth ` consisting of all edges,
check and variable nodes that can be reached from this edge
up to depth 2`. At the first stage, it is easy to see that this edge
is peeled off from the graph if all the edges (c, v0) connected
to the check node c are peeled off because in that case check
c will be a singleton allowing to decode the variable v and
to peel off the edge e. This has been depicted in Figure 4.

v

c

v0

c0

Fig. 4: Tree-like neighborhood an an edge e = (v, c). Dashed
lines show the edges removed before iteration t.

One can proceed in this way in the directed neighborhood
to find the condition under which the variable v0 connected
to c can be peeled off and so on. Assuming that the directed
neighborhood is a tree, all of the messages that are passed
from the leaves up to the the head edge e are independent
from one another. Let p` be the probability that edge e is
peeled off depending on the information received from the
directed tree neighborhood up to depth `. A simple analysis
similar to [9], gives the following recursion

pj+1 = �(1� ⇢(1� pj)), j 2 [`], (6)

where � and ⇢ are the edge degree polynomials of the
ensemble G. This iteration shows the progress of the peeling

decoder in recovering unknown variable nodes. In [9], it
was proved that for any specific edge e, asymptotically with
very high probability the directed neighborhood of e up
to any fixed depth ` is a tree. In particular, starting from
a left regular graph G from G(K, B, C) with KC edges,
after ` steps of decoding, the average number of unpeeled
edges is concentrated around KCp`. A martingale argument
was applied in [9] to show that not only the average of
the unpeeled edges is approximately KCp` but also with
very high probability the number of those edges is well
concentrated around KCp`.

Equation (6) is known as density evolution equation. Start-
ing from p0 = 1, this equation fully predicts the performance
of the peeling decoding over the ensemble G. Figure 5 shows
a typical behavior of this iterative equation for different
values of the parameter � = K

B .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pj

pj+1

� = 1

� = 2

� = 3

Fig. 5: Density Evolution equation for C = 3.

For small values of �, 0 is the only fixed point of this
equation which implies that asymptotically the decoder can
recover a very close to 1 ratio of the variables. However, for
large values of �, i.e. � & 2.44 for C = 3, this equation
has a fixed point greater than 0. The largest fixed point
is the place where the peeling decoder stops and can not
proceed to decode the remaining variables. This analysis only
guarantees that for any ✏ 2 (0, 1), asymptotically as N tends
to infinity, 1� ✏ ratio of the edges are peeled off. We use a
combinatorial argument that guarantees the full recovery of
all the remaining variables with high probability. The proof
follows from a slight variation of Lemma 1 in [10].

Proposition 5. Let G be a graph from the ensemble
G(K, B, C) with C � 3. There is some ⌘ 2 (0, 1) such
that with probability at least 1�O(1

K3(C/2�1)), the recovery
process restricted to the subgraph induced by any ⌘-fraction
of the left nodes terminates successfully.

VII. ANALYSIS OF THE LESS SPARSE REGIME

Similar to the very sparse regime ↵ 2 (0, 1
3], we use the

following steps to analyze the performance of the algorithm:

1) Constructing suitable hash functions,
2) Representing hashing of nonzero spectral values by an

equivalent bipartite graph,
3) Analyzing the performance of the peeling decoder over

the resulting bipartite graph.
For simplicity, we consider the case where ↵ = 1 � 1

C for
some integer C � 3.

A. Hash Construction

Let ↵ = 1 � 1
C for some integer C � 3. Suppose x is

an N = 2n dimensional signal and let X denote its WHT.
Assume that the components of X are labelled by binary
indices Xn�1

0 2 Fn
2 . Let t = n

C and let us divide the set
of n binary indices Xn�1

0 into C non-intersecting subsets
r0, r1, . . . , rC�1, where ri = X(i+1)t�1

i t . It is clear that there
is a one-to-one relation between every binary vector Xn�1

0 2
Fn

2 and its representation (r0, r1, . . . , rC�1). We construct C
different hash function hi, i 2 [C] by selecting C different
subset of (r0, r1, . . . , rC�1) each of size C�1 and appending
them together. For example,

h1(X
n�1
0) = (r0, r1, . . . , rC�2) = X(C�1)t�1

0 ,

and the hash output is obtained by appending C � 1 first
ri, i 2 [C]. One can simply check that hi, i 2 [C] are linear
surjective functions from Fn

2 to Fb
2, where b = (C � 1)t. In

particular, the range of each hash consists of B = 2b different
elements of Fb

2. With this construction, the average number of
nonzero elements per bin in every hash is kept at � = K

B = 1
and the complexity of computing all the hashes along with
their n � b shifts, which are necessary for collision detec-
tion/support estimation, is CK log2(K) log2(

N
K). The sample

complexity can also be easily checked to be CK log2(
N
K).

B. Bipartite Graph Representation

Similar to the very sparse regime, we can assign a bipartite
graph with the K variable nodes corresponding to nonzero
spectral components and with CB check nodes correspond-
ing to different bins of all the hashes. In particular, we
consider C different set of check nodes S1, S2, . . . , SC each
containing B nodes labelled with the elements of Fb

2 and a
specific nonzero spectral component labelled with Xn�1

0 is
connected to nodes si 2 Si whose binary label is hi(X

n�1
0).

The difference with the less sparse case is that the selection
of the neighbor checks in different hashes is not completely
random anymore. To explain more, let us assume that ↵ = 2

3 ,
thus C = 3. Assume that for a nonzero spectral variable
labelled with Xn�1

0 , ri denotes X(i+1)t�1
i t , where t = n

C .
In this case, this variable is connected to bins labelled with
(r0, r1), (r1, r2) and (r0, r2) in 3 different hashes as depicted
in Figure 6.

Assuming that Xn�1
0 is selected uniformly randomly from

Fn
2 , the bin number is each hash, i.e. (r0, r1) in the first

hash, is selected uniformly randomly among all possible bins.

Fig. 6: Bipartite graph representation for ↵ = 2
3 , C = 3.

However, it is easily seen that the joint selection of bins is not
completely random among different hashes. In other words,
the associated bins in different hashes are not independent
from one another. However, assuming the random support
model, where K variables V K

1 are selected independently as
the position of nonzero spectral variables, the bin association
for different variables Vi is still done independently.

C. Performance Analysis of the Peeling Decoder

An analysis based on the DE for the BP algorithm can still
be applied to track the ratio of the unpeeled edges during the
algorithm run. In other words, setting p0 = 1 and

pj+1 = �(1� ⇢(1� pj)), j 2 [`],

as in (6) with � and ⇢ being the edge degree polynomials
of the underlying bipartite graph, it is still possible to show
that after ` steps of decoding the average number of unpeeled
edges is approximately KCp`. A martingale argument simi-
lar to [9] can be applied to show that the number of remaining
edges is also well concentrated around its average. Another
argument is necessary to show that if the peeling decoder
decodes a majority of the variables, it can proceed to decode
all of them with very high probability. To formulate this, we
define the concept of a trapping set for the peeling decoder.

Definition 2. Let ↵ = 1� 1
C for some integer C � 3 and let

hi, i 2 [C] be a set of hash functions as explained before. A
subset of variables T ⇢ Fn

2 is called a trapping set for the
peeling decoder if for any v 2 T and for any i 2 [C], there
is another vi 2 T , v 6= vi such that hi(v) = hi(vi), thus
colliding with v in the i-th hash.

Let X be a spectral variable in the trapping set with
the corresponding binary representation Xn�1

0 and assume
that C = 3. We can equivalently represent this variable
with (r0, r1, r2), where ri = X(i+1)t�1

it with t = n
C . We

can consider a three dimensional lattice whose i-th axis is
labelled by all possible values of ri. In this space, A set T is
a trapping set if and only if for any (r0, r1, r2) 2 T there are
three other elements (r0

0, r1, r2), (r0, r0
1, r2) and (r0, r1, r0

2)
in T that can be reached from (r0, r1, r2) by moving along
exactly one of the axes. In general, for C � 3, the set of
all C-tuples (r0, r1, . . . , rC�1) is a C dimensional lattice.

We denote this lattice by L. The intersection of this lattice
by the hyperplane Ri = ri is a (C � 1) dimensional lattice
defined by

L(Ri = ri) = {(r0, . . . , ri�1, ri+1, . . . , rC�1) :

(r0, r1, . . . , ri�1, ri, ri+1, . . . , rC�1) 2 L}.

Similarly, for S ⇢ L, we have the following definition

S(Ri = ri) = {(r0, . . . , ri�1, ri+1, . . . , rC�1) :

(r0, r1, . . . , ri�1, ri, ri+1, . . . , rC�1) 2 S}.

Obviously, S(Ri = ri) ⇢ L(Ri = ri). We have the following
proposition whose proof simply follows from the definition
of the trapping set.

Proposition 6. Assume that T is a trapping set for the C
dimensional lattice representation L of the nonzero spectral
domain variables as explained before. Then for any ri on the
Ri axis, T (Ri = ri) is either empty or a trapping set for the
(C � 1) dimensional lattice L(Ri = ri).

Proposition 7. The size of the trapping set for a C dimen-
sional lattice is at least 2C .

Proof: We give a simple proof using the induction on
C. For C = 1, we have a one dimensional lattice along
a line labelled with r0. In this case, there must be at least
two variables on the line to build a trapping set. Consider
a trapping set T of dimension C. There are at least two
points (r0, r1, . . . , rC�1) and (r0

0, r1, . . . , rC�1) in T . By
Proposition 6, T (R0 = r0) and T (R0 = r0

0) are two
(C � 1) dimensional trapping sets each containing at least
2C�1 elements by induction hypothesis. Thus, T has at least
2C elements.

Proposition 8. Let s be a fixed positive integer. Assume
that ↵ = 1� 1

C for some integer C � 3 and consider a hash
structure with C different hashes as explained before. If the
peeling decoder decodes all except a set of variables of size
s, it can decode all of the variables with a probability at least
1�O(1/N

2C

C �2).

The proof follows from a similar proof in [9].

VIII. EXPERIMENTAL RESULTS

In this section, we have empirically evaluated the perfor-
mance of the SparseFHT algorithm for a variety of design
parameters. The simulations are implemented in C program-
ming language and the success probability of the algorithm
has been estimated via sufficient number of simulations.

Experiment 1: We fix the signal size to N = 222 and run
the algorithm 1200 times to estimate the success probability
for ↵ 2 (0, 1

3] and C = 1
↵ . Fig. 7 shows the simulation result.

Experiment 2: Fig. 8 shows a comparison of the runtime
of the SparseFHT algorithm with a straightforward imple-
mentation of the fast Hadamard transform for N = 215.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Fig. 7: Performance of SparseFHT for ↵ 2 (0, 1
3], N = 222

and C = 1
↵ .

0 1/3 2/3 1
0

200

400

600

800

1000

Fig. 8: Comparison of the Median runtime of the SparseFHT
with the standard Hadamard transform for N = 215 and for
different values of ↵.

REFERENCES

[1] S. Haghighatshoar and E. Abbe, “Polarization of the Rényi information
dimension for single and multi terminal analog compression,” arXiv
preprint arXiv:1301.6388, 2013.

[2] M. H. Lee and M. Kaveh, “Fast Hadamard transform based on a simple
matrix factorization,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 34, no. 6, pp. 1666–1667, 1986.

[3] J. R. Johnson and M. Pueschel, “In search of the optimal Walsh-
Hadamard transform,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference
on, 2000, pp. 3347–3350.

[4] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A Tutorial on Fast
Fourier Sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2,
pp. 57–66, 2008.

[5] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical
algorithm for sparse Fourier transform,” Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1183–1194, 2012.

[6] ——, “Nearly optimal sparse Fourier transform,” Proceedings of the
44th symposium on Theory of Computing, pp. 563–578, 2012.

[7] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-Optimal Average-Case Sparse Fourier Transform in Two
Dimensions,” arXiv.org, Mar. 2013.

[8] S. Pawar and K. Ramchandran, “A hybrid DFT-LDPC framework for
fast, efficient and robust compressive sensing,” in Communication,
Control, and Computing (Allerton), 2012 50th Annual Allerton Con-
ference on, 2012, pp. 1943–1950.

[9] ——, “Computing a k-sparse n-length Discrete Fourier Transform
using at most 4k samples and O(k log k) complexity,” arXiv.org, May
2013.

[10] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spiel-
man, “Efficient erasure correcting codes,” Information Theory, IEEE
Transactions on, vol. 47, no. 2, pp. 569–584, 2001.

