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Introduction
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Why the Hadamard transform ?

» Historically, low computation
approximation to DFT.

» Coding, 1969 Mariner Mars probe.

» Communication, orthogonal codes
in WCDMA.

» Compressed sensing, maximally
incoherent with Dirac basis.

» Spectroscopy, design of
instruments with lower noise.
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Related work

Ghazi et al., 2013. (Next talk!)

» Spectrum bucketing through downsampling.
» Two-dimensional sparse DFT.
» Constant probability of failure.

Pawar & Ramchandran, 2013.

v

Spectrum bucketing through downsampling.
One-dimensional sparse DFT.
Length is power of small co-prime numbers.

v

v

v

Probability of failure asymptotically vanishing.
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Fast Hadamard transform

» Butterfly structure similar to FFT.

» Time complexity O(Nlog, N). >

» Sample complexity N. .
(O—
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Fast Hadamard transform
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» Butterfly structure similar to FFT.
» Time complexity O(Nlog, N). %O
» Sample complexity N. o0
+ Universal, i.e. works for all signals. %O
— Does not exploit signal structure o0
(e.g. sparsity). O—=0
o—»o—»%o

Can we do better ?
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Contribution: Sparse fast Hadamard transform

Assumptions

» The signal is exaclty K-sparse in the transform domain.
» Sub-linear sparsity regime K = O(N*), 0 < ao < 1.
» Support of the signal is uniformly random.
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Contribution: Sparse fast Hadamard transform

Assumptions

» The signal is exaclty K-sparse in the transform domain.
» Sub-linear sparsity regime K = O(N*), 0 < ao < 1.
» Support of the signal is uniformly random.

Contribution
An algorithm computing the K non-zero coefficients with:

» Time complexity O(K log, K log, %).
» Sample complexity O(K log, % ).
» Probability of failure asymptotically vanishes.
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Outline

1. Sparse FHT algorithm
2. Analysis of probability of failure

3. Empirical results
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Another look at the Hadamard transform

» Consider indices of x € RN,
N=2" 7=40,...,2% -1}
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Another look at the Hadamard transform

(0,0,1) 0,1,1)

» Consider indices of x € RN,

N =2". *o——@

(0,0,0) (0,1,0)

» Take the binary expansion of

indices.
» Represent signal on hypercube. A A
» Take DFT in every direction. “'010). “'1'0).
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Another look at the Hadamard transform

(0,0,1) 0,1,1)
Consider indices of x € RV,
N=2"
Take the binary expansion of
indices.
Represent signal on hypercube. (.01) a1

Take DFT in every direction. (1.00) (1.1.0

v

(0,0,0) (0,1,0)

v

v

v
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Another look at the Hadamard transform

Consider indices of x € RV,

N =2".

Take the binary expansion of
indices.

Represent signal on hypercube.
Take DFT in every direction.

v

v

v

v

Xe= > (1) Mxn,  kmeF3, (k,my=> km.

meFj i=0
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Another look at the Hadamard transform

Consider indices of x € RV,

N =2".

Take the binary expansion of
indices.

Represent signal on hypercube.
Take DFT in every direction.

v

v

v

v

Xe= > (1) Mxn,  kmeF3, (k,my=> km.

meFj i=0

Treat indices as binary vectors.
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Hadamard property |I: downsampling/aliasing

Given B = 2°, a divider of N = 27, and # € F5*",
where rows of H are a subset of rows of identity matrix,

WHT b
Xy Tm Z Xyrkyi» mk eFs.

IEN(H)
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Hadamard property |I: downsampling/aliasing

Given B = 2°, a divider of N = 2", and H € F5*",
where rows of H are a subset of rows of identity matrix,

WHT b
Xy Tm Z Xyrkyi» Mk eFs.

IEN(H)
e.9. H = [Opx(n—b) I | selects the b high order bits.

(1,0,0) (1,1,0)

(0,0,0)

0,0,1)
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» Downsampling induces an aliasing pattern.
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Aliasing induced bipartite graph

time-domain
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l 4-WHT i 4-WHT
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Hadamard-domain

» Downsampling induces an aliasing pattern.
» Different downsamplings produce different patterns.
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Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

Peeling decoder algorithm:
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Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

hd

Peeling decoder algorithm:
1. Find a singleton check: {Xj }
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Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

b4
& & B & & &

Peeling decoder algorithm:
1. Find a singleton check: { X, Xs }
2. Peel it off.
3. Repeat until nothing left.

SparseFHT



Sparse FHT algorithm
@000

Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

Peeling decoder algorithm:
1. Find a singleton check: { X, Xs }
2. Peel it off.
3. Repeat until nothing left.

SparseFHT



Sparse FHT algorithm
@000

Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

b4
& & B X &l

Peeling decoder algorithm:
1. Find a singleton check: {Xj, Xg, X11}
2. Peel it off.
3. Repeat until nothing left.
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Genie-aided peeling decoder

A genie indicates us
» if a check is connected to only one variable (singleton),
» in that case, the genie also gives the index of that variable.

E B EE B E B B
Success

Peeling decoder algorithm:
1. Find a singleton check: {Xj, Xg, X11}
2. Peel it off.
3. Repeat until nothing left.
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Hadamard property Il: shift/modulation

Theorem (shift/modulation)

Given p € F},
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Hadamard property Il: shift/modulation

Theorem (shift/modulation)
Given p € F},

Consequence

The signal can be modulated in frequency by manipulating the
time-domain samples.
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How to construct the Genie
Non-modulated Modulated

Xi X

» Collision: if > 2 variables connected to same check.
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How to construct the Genie
Non-modulated Modulated

Xi X

» Collision: if > 2 variables connected to same check.

X 1)) 4 X (1

> XX 7& +1, (mild assumption on distribution of X).
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How to construct the Genie
Non-modulated Modulated

X X
» Singleton: only one variable connected to check.

> X/(%?“”) = (=1)P:1) = +1.
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How to construct the Genie
Non-modulated Modulated

Xi X

» Singleton: only one variable connected to check.

> X'(%?m’) = (=1)®) = +1. We can know (p, i)!
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How to construct the Genie
Non-modulated Modulated

Xi X

» Singleton: only one variable connected to check.

> X'(%?m’) = (=1)®) = +1. We can know (p, i)!

» O(log, %) measurements sufficient to recover index /,
(dimension of null-space of downsampling matrix 7).
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Sparse fast Hadamard transform

Algorithm

1. Set number of checks per downsampling B = O(K).
2. Choose C downsampling matrices H1,...,Hc.

3. Compute C(log, N/K + 1) size-K fast Hadamard
transform, each takes O(K log, K).

4. Decode non-zero coefficients using peeling decoder.
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3. Compute C(log, N/K + 1) size-K fast Hadamard
transform, each takes O(K log, K).
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Sparse fast Hadamard transform

Algorithm

1. Set number of checks per downsampling B = O(K).
2. Choose C downsampling matrices H1,...,Hc.

3. Compute C(log, N/K + 1) size-K fast Hadamard
transform, each takes O(K log, K).

4. Decode non-zero coefficients using peeling decoder.

Performance
» Time complexity — O(K'log, K'log, N/K).
» Sample complexity — O(K log, %).
» How to construct H;,...,Hc ? Probability of success ?
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Very sparse regime

Setting

» K=0O(N“),0 < a<1/3.
» Uniformly random support.
» Study asymptotic probability of failure as n — oc.
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Analysis of probability of failure
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Very sparse regime

Setting
» K=0O(N%),0<a<1/3.
» Uniformly random support.
» Study asymptotic probability of failure as n — oc.

Downsampling matrices construction

> Achieves values a = &, i.e. b= 4.
» Deterministic downsampling matrices H1, ..., Hc,

¢l 7l
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Balls-and-bins model

Balls-and-bins model
g2 g3

q
.1,\:,\:.\‘ = DD
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Balls-and-bins model

Balls-and-bins model

q
.lLLL = 22N

Him = q
Hom = q
Hsm = g3
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Balls-and-bins model

Balls-and-bins model
(e}] a2 a3

7’[1/77
Hom = qo
m Ham = g3

» Theorem: Both constructions are equivalent.
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Balls-and-bins model
(e}] a2 a3

Hom

m Ham = g3

» Theorem: Both constructions are equivalent.
Proof: By construction, all rows of H; are linearly independent. [
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Balls-and-bins model

Balls-and-bins model
(e}] a2 a3

Hgm
m Ham = g3

» Theorem: Both constructions are equivalent.
Proof: By construction, all rows of H; are linearly independent. [
» Reduces to LDPC decoding analysis.

» Error correcting code design (Luby et al. 2001).
» FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).
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Analysis of probability of failure
°

Extension to less-sparse regime

» K=0O(N%),2/3<a<1.
» Balls-and-bins model not equivalent anymore.
» Leta =1 — k. Construct #1,...,Hc,

Ha
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Analysis of probability of failure
°

Extension to less-sparse regime

v

K=0(N%),2/3<a<1.
Balls-and-bins model not equivalent anymore.
Let « = 1 — &. Construct H1,..., Ho,

Q“ﬂ

By construction: N'(H;) \N(#;) =

v

v

v
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Analysis of probability of failure
°

Extension to less-sparse regime

v

K=0(N%),2/3<a<1.
Balls-and-bins model not equivalent anymore.
Let o = 1 — . Construct H1, ..., He,

-uﬂlﬂ

By construction: N'(#H;) NN (H,) =

¥

v

v

v
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SparseFHT — Probability of success

Probability of success - N = 222

1 - |

0.8 i

0.61 i

0.4r R

0 1/3 2/3 1
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SparseFHT vs. FHT

Runtime [us] — N = 215
1000

800~ 1
Sparse FHT

600 1

400+ ]
FHT

200r ]

0O 1/3 2/3 1
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Conclusion

Contribution

v

Sparse fast Hadamard algorithm.
Time complexity O(K log, K log, ).

v

v

Sample complexity O(K log, %).
Probability of success asymptotically equal to 1.

v
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Conclusion

Contribution

v

Sparse fast Hadamard algorithm.
Time complexity O(K log, K log, ).

v

v

Sample complexity O(K log, %).
Probability of success asymptotically equal to 1.

v

What’s next ?

» Investigate noisy case.
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Thanks for your attention!
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Code and figures available at
http://lcav.epfl.ch/page-99903.html
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