Introduction	Sparse FHT algorithm	Analysis of probability of failure	Conclusion

A Fast Hadamard Transform for Signals with Sub-linear Sparsity

Robin Scheibler Saeid Haghighatshoar Martin Vetterli

School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne, Switzerland

October 3, 2013

Why the Hadamard transform ?

- Historically, low computation approximation to DFT.
- Coding, 1969 Mariner Mars probe.
- Communication, orthogonal codes in WCDMA.
- Compressed sensing, maximally incoherent with Dirac basis.
- Spectroscopy, design of instruments with lower noise.

16 \times 16 Hadamard matrix

Mariner probe

Ghazi et al., 2013. (Next talk!)

- Spectrum bucketing through downsampling.
- Two-dimensional sparse DFT.
- Constant probability of failure.

Pawar & Ramchandran, 2013.

- Spectrum bucketing through downsampling.
- One-dimensional sparse DFT.
- Length is power of small co-prime numbers.
- Probability of failure asymptotically vanishing.

- Butterfly structure similar to FFT.
- Time complexity $O(N \log_2 N)$.
- Sample complexity N.
- + Universal, i.e. works for all signals.
- Does not exploit signal structure (e.g. sparsity).

Can we do better ?

- Butterfly structure similar to FFT.
- Time complexity $O(N \log_2 N)$.
- Sample complexity N.
- + Universal, i.e. works for all signals.
- Does not exploit signal structure (e.g. sparsity).

Can we do better ?

- Butterfly structure similar to FFT.
- Time complexity $O(N \log_2 N)$.
- Sample complexity N.
- + Universal, i.e. works for all signals.
- Does not exploit signal structure (e.g. sparsity).

- Butterfly structure similar to FFT.
- Time complexity $O(N \log_2 N)$.
- Sample complexity N.
- + Universal, i.e. works for all signals.
- Does not exploit signal structure (e.g. sparsity).

Can we do better ?

Contribution: Sparse fast Hadamard transform

Assumptions

- ► The signal is exaclty *K*-sparse in the transform domain.
- Sub-linear sparsity regime $K = O(N^{\alpha})$, $0 < \alpha < 1$.
- Support of the signal is uniformly random.

Contribution

An algorithm computing the *K* non-zero coefficients with:

- Time complexity $O(K \log_2 K \log_2 \frac{N}{K})$.
- Sample complexity $O(K \log_2 \frac{N}{K})$.
- Probability of failure asymptotically vanishes.

Contribution: Sparse fast Hadamard transform

Assumptions

- ► The signal is exaclty *K*-sparse in the transform domain.
- Sub-linear sparsity regime $K = O(N^{\alpha})$, $0 < \alpha < 1$.
- Support of the signal is uniformly random.

Contribution

An algorithm computing the *K* non-zero coefficients with:

- Time complexity $O(K \log_2 K \log_2 \frac{N}{K})$.
- Sample complexity $O(K \log_2 \frac{N}{K})$.
- Probability of failure asymptotically vanishes.

Introduction	Sparse FHT algorithm 0000000	Analysis of probability of failure	Conclusion
Outline			

1. Sparse FHT algorithm

2. Analysis of probability of failure

3. Empirical results

• Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.

$$\mathcal{I}=\{0,\ldots,2^3-1\}$$

- Take the binary expansion of indices.
- Represent signal on hypercube.
- ► Take DFT in every direction.

• Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.

$$\mathcal{I} = \{(0,0,0), \dots, (1,1,1)\}$$

- Take the binary expansion of indices.
- Represent signal on hypercube.
- ► Take DFT in every direction.

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- ► Take DFT in every direction.

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

$$X_{k_0,\ldots,k_{n-1}} = \sum_{m_0=0}^{1} \cdots \sum_{m_{n-1}=0}^{1} (-1)^{k_0 m_0 + \cdots + k_{n-1} m_{n-1}} x_{m_0,\ldots,m_{n-1}},$$

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

n-1

$$X_k = \sum_{m \in \mathbb{F}_2^n} (-1)^{\langle k, m \rangle} x_m, \qquad k, m \in \mathbb{F}_2^n, \quad \langle k, m \rangle = \sum_{i=0}^{n-1} k_i m_i.$$

Treat indices as binary vectors.

- Consider indices of $x \in \mathbb{R}^N$, $N = 2^n$.
- Take the binary expansion of indices.
- Represent signal on hypercube.
- Take DFT in every direction.

$$X_k = \sum_{m \in \mathbb{F}_2^n} (-1)^{\langle k, m \rangle} x_m, \qquad k, m \in \mathbb{F}_2^n, \quad \langle k, m \rangle = \sum_{i=0}^{n-1} k_i m_i.$$

Treat indices as binary vectors.

Given $B = 2^b$, a divider of $N = 2^n$, and $\mathcal{H} \in \mathbb{F}_2^{b \times n}$, where rows of \mathcal{H} are a subset of rows of identity matrix,

$$x_{\mathcal{H}^T m} \stackrel{WHT}{\longleftrightarrow} \sum_{i \in \mathcal{N}(\mathcal{H})} X_{\mathcal{H}^T k + i}, \quad m, k \in \mathbb{F}_2^b.$$

Given $B = 2^b$, a divider of $N = 2^n$, and $\mathcal{H} \in \mathbb{F}_2^{b \times n}$, where rows of \mathcal{H} are a subset of rows of identity matrix,

$$x_{\mathcal{H}^T m} \stackrel{WHT}{\longleftrightarrow} \sum_{i \in \mathcal{N}(\mathcal{H})} X_{\mathcal{H}^T k+i}, \quad m, k \in \mathbb{F}_2^b.$$

Given $B = 2^b$, a divider of $N = 2^n$, and $\mathcal{H} \in \mathbb{F}_2^{b \times n}$, where rows of \mathcal{H} are a subset of rows of identity matrix,

$$x_{\mathcal{H}^T m} \stackrel{WHT}{\longleftrightarrow} \sum_{i \in \mathcal{N}(\mathcal{H})} X_{\mathcal{H}^T k+i}, \quad m, k \in \mathbb{F}_2^b.$$

Given $B = 2^b$, a divider of $N = 2^n$, and $\mathcal{H} \in \mathbb{F}_2^{b \times n}$, where rows of \mathcal{H} are a subset of rows of identity matrix,

$$x_{\mathcal{H}^T m} \stackrel{WHT}{\longleftrightarrow} \sum_{i \in \mathcal{N}(\mathcal{H})} X_{\mathcal{H}^T k+i}, \quad m, k \in \mathbb{F}_2^b.$$

time-domain

Hadamard-domain

Downsampling induces an aliasing pattern.

Different downsamplings produce different patterns.

- Downsampling induces an aliasing pattern.
- > Different downsamplings produce different patterns.

- Downsampling induces an aliasing pattern.
- Different downsamplings produce different patterns.

- Downsampling induces an aliasing pattern.
- Different downsamplings produce different patterns.

- Downsampling induces an aliasing pattern.
- Different downsamplings produce different patterns.

- Downsampling induces an aliasing pattern.
- Different downsamplings produce different patterns.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- ▶ in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.

A genie indicates us

- if a check is connected to only one variable (singleton),
- in that case, the genie also gives the index of that variable.

- 1. Find a singleton check: $\{X_1, X_8, X_{11}\}$
- 2. Peel it off.
- 3. Repeat until nothing left.
Hadamard property II: shift/modulation

Theorem (shift/modulation) Given $p \in \mathbb{F}_2^n$,

$$x_{m+p} \stackrel{WHT}{\longleftrightarrow} X_k (-1)^{\langle p, k \rangle}.$$

Consequence

The signal can be modulated in frequency by manipulating the time-domain samples.

Hadamard property II: shift/modulation

Theorem (shift/modulation)

Given $p \in \mathbb{F}_2^n$,

$$x_{m+\rho} \stackrel{WHT}{\longleftrightarrow} X_k (-1)^{\langle \rho, k \rangle}.$$

Consequence

The signal can be modulated in frequency by manipulating the time-domain samples.

Non-modulated

Modulated

• Collision: if \geq 2 variables connected to same check.

 $\blacktriangleright \ \frac{X_i(-1)^{\langle \rho, i \rangle} + X_j(-1)^{\langle \rho, j \rangle}}{X_i + X_j} \neq \pm 1, \text{ (mild assumption on distribution of } X\text{)}.$

► Collision: if ≥ 2 variables connected to same check.

 $\blacktriangleright \frac{X_i(-1)^{\langle p,i\rangle} + X_j(-1)^{\langle p,j\rangle}}{X_i + X_j} \neq \pm 1, \text{ (mild assumption on distribution of } X\text{)}.$

► Collision: if ≥ 2 variables connected to same check.

 $\quad \frac{X_i(-1)^{\langle p,i\rangle} + X_j(-1)^{\langle p,j\rangle}}{X_i + X_j} \neq \pm 1, \text{ (mild assumption on distribution of } X).$

- Singleton: only one variable connected to check.
- $\frac{X_i(-1)^{\langle p,i\rangle}}{X_i} = (-1)^{\langle p,i\rangle} = \pm 1$. We can know $\langle p,i\rangle$

► O(log₂ ^N/_K) measurements sufficient to recover index *i*, (dimension of null-space of downsampling matrix *H*).

Singleton: only one variable connected to check.

•
$$\frac{X_i(-1)^{\langle p, i \rangle}}{X_i} = (-1)^{\langle p, i \rangle} = \pm 1$$
. We can know $\langle p, i \rangle$!

► $O(\log_2 \frac{N}{K})$ measurements sufficient to recover index *i*, (dimension of null-space of downsampling matrix \mathcal{H}).

Singleton: only one variable connected to check.

•
$$\frac{X_i(-1)^{\langle p, i \rangle}}{X_i} = (-1)^{\langle p, i \rangle} = \pm 1$$
. We can know $\langle p, i \rangle$!

► $O(\log_2 \frac{N}{K})$ measurements sufficient to recover index *i*, (dimension of null-space of downsampling matrix \mathcal{H}).

Singleton: only one variable connected to check.

$$\quad \frac{X_i(-1)^{\langle \rho, i \rangle}}{X_i} = (-1)^{\langle \rho, i \rangle} = \pm 1. \text{ We can know } \langle \rho, i \rangle!$$

► O(log₂ ^N/_K) measurements sufficient to recover index *i*, (dimension of null-space of downsampling matrix *H*).

Sparse fast Hadamard transform

Algorithm

- 1. Set number of checks per downsampling B = O(K).
- 2. Choose *C* downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$.
- 3. Compute $C(\log_2 N/K + 1)$ size-*K* fast Hadamard transform, each takes $O(K \log_2 K)$.
- 4. Decode non-zero coefficients using peeling decoder.

Performance

- Time complexity $-O(K \log_2 K \log_2 N/K)$.
- Sample complexity $-O(K \log_2 \frac{N}{K})$.
- ► How to construct H₁,..., H_C ? Probability of success ?

Sparse fast Hadamard transform

Algorithm

- 1. Set number of checks per downsampling B = O(K).
- 2. Choose C downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$.
- 3. Compute $C(\log_2 N/K + 1)$ size-*K* fast Hadamard transform, each takes $O(K \log_2 K)$.
- 4. Decode non-zero coefficients using peeling decoder.

Performance

- Time complexity $O(K \log_2 K \log_2 N/K)$.
- Sample complexity $-O(K \log_2 \frac{N}{K})$.
- ▶ How to construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$? Probability of success ?

Sparse fast Hadamard transform

Algorithm

- 1. Set number of checks per downsampling B = O(K).
- 2. Choose C downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$.
- 3. Compute $C(\log_2 N/K + 1)$ size-*K* fast Hadamard transform, each takes $O(K \log_2 K)$.
- 4. Decode non-zero coefficients using peeling decoder.

Performance

- Time complexity $O(K \log_2 K \log_2 N/K)$.
- Sample complexity $O(K \log_2 \frac{N}{K})$.
- ▶ How to construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$? Probability of success ?

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

$$\frac{n}{C}$$
 \mathcal{H}_1

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Setting

- $K = O(N^{\alpha}), 0 < \alpha < 1/3.$
- Uniformly random support.
- Study asymptotic probability of failure as $n \to \infty$.

- Achieves values $\alpha = \frac{1}{C}$, i.e. $b = \frac{n}{C}$.
- Deterministic downsampling matrices $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Uniformly random support model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent. \square

Reduces to LDPC decoding analysis.

- Error correcting code design (Luby et al. 2001).
- FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Uniformly random support model

• Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Uniformly random support model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Uniformly random support model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Uniformly random support model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent. \Box

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

► Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent. \square

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

• Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

Reduces to LDPC decoding analysis.

- Error correcting code design (Luby et al. 2001).
- FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

• Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

Reduces to LDPC decoding analysis.

- Error correcting code design (Luby et al. 2001).
- FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

• Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent.

Reduces to LDPC decoding analysis.

- Error correcting code design (Luby et al. 2001).
- FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

$$\left\{ \begin{array}{rrrr} \mathcal{H}_1m &=& q_1\\ \mathcal{H}_2m &=& q_2\\ \mathcal{H}_3m &=& q_3 \end{array} \right.$$

Theorem: Both constructions are equivalent. Proof: By construction, all rows of H₁ are linearly independent.

Reduces to LDPC decoding analysis.

- Error correcting code design (Luby et al. 2001).
- FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of \mathcal{H}_i are linearly independent. \square

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of H_i are linearly independent.

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

- ► Theorem: Both constructions are equivalent. Proof: By construction, all rows of H_i are linearly independent.
- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

Balls-and-bins model

Theorem: Both constructions are equivalent.

Proof: By construction, all rows of H_i are linearly independent.

- Reduces to LDPC decoding analysis.
 - Error correcting code design (Luby et al. 2001).
 - FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).

• $K = O(N^{\alpha}), 2/3 \le \alpha < 1.$

Balls-and-bins model not equivalent anymore.

• Let $\alpha = 1 - \frac{1}{C}$. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

- $K = O(N^{\alpha}), 2/3 \le \alpha < 1.$
- Balls-and-bins model not equivalent anymore.

• Let $\alpha = 1 - \frac{1}{C}$. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

•
$$K = O(N^{\alpha}), 2/3 \le \alpha < 1.$$

Balls-and-bins model not equivalent anymore.

• Let
$$\alpha = 1 - \frac{1}{C}$$
. Construct $\mathcal{H}_1, \ldots, \mathcal{H}_C$,

Probability of success - $N = 2^{22}$

SparseFHT vs. FHT

Conclusion

Contribution

- Sparse fast Hadamard algorithm.
- Time complexity $O(K \log_2 K \log_2 \frac{N}{K})$.
- Sample complexity $O(K \log_2 \frac{N}{K})$.
- Probability of success asymptotically equal to 1.

What's next ?

Investigate noisy case.

Conclusion

Contribution

- Sparse fast Hadamard algorithm.
- Time complexity $O(K \log_2 K \log_2 \frac{N}{K})$.
- Sample complexity $O(K \log_2 \frac{N}{K})$.
- Probability of success asymptotically equal to 1.

What's next ?

Investigate noisy case.

Analysis of probability of failure

Empirical results

Conclusion

Thanks for your attention!

Code and figures available at http://lcav.epfl.ch/page-99903.html