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Why the Hadamard transform ?

I Historically, low computation
approximation to DFT.

I Coding, 1969 Mariner Mars probe.

I Communication, orthogonal codes
in WCDMA.

I Compressed sensing, maximally
incoherent with Dirac basis.

I Spectroscopy, design of
instruments with lower noise.

16 ⇥ 16 Hadamard matrix

Mariner probe
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Related work

Ghazi et al., 2013. (Next talk!)

I Spectrum bucketing through downsampling.
I Two-dimensional sparse DFT.
I Constant probability of failure.

Pawar & Ramchandran, 2013.

I Spectrum bucketing through downsampling.
I One-dimensional sparse DFT.
I Length is power of small co-prime numbers.
I Probability of failure asymptotically vanishing.
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Fast Hadamard transform

I Butterfly structure similar to FFT.
I Time complexity O(N log2 N).
I Sample complexity N.
+ Universal, i.e. works for all signals.
� Does not exploit signal structure

(e.g. sparsity).

Can we do better ?
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Contribution: Sparse fast Hadamard transform

Assumptions

I The signal is exaclty K -sparse in the transform domain.
I Sub-linear sparsity regime K = O(N↵), 0 < ↵ < 1.
I Support of the signal is uniformly random.

Contribution
An algorithm computing the K non-zero coefficients with:

I Time complexity O(K log2 K log2
N
K ).

I Sample complexity O(K log2
N
K ).

I Probability of failure asymptotically vanishes.
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Outline

1. Sparse FHT algorithm

2. Analysis of probability of failure

3. Empirical results
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Another look at the Hadamard transform

I Consider indices of x 2 RN ,
N = 2n.

I Take the binary expansion of
indices.

I Represent signal on hypercube.
I Take DFT in every direction.

I = {0, . . . , 23 � 1}
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Hadamard property I: downsampling/aliasing
Given B = 2b, a divider of N = 2n, and H 2 Fb⇥n

2 ,
where rows of H are a subset of rows of identity matrix,

xHT m
WHT !

X

i2N (H)

XHT k+i , m, k 2 Fb
2.

e.g. H =
⇥

0b⇥(n�b) Ib
⇤

selects the b high order bits.
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Aliasing induced bipartite graph

time-domain

Hadamard-domain

I Downsampling induces an aliasing pattern.
I Different downsamplings produce different patterns.
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Aliasing induced bipartite graph

time-domain

Hadamard-domain

4-WHT 4-WHT

Ch
ec
ks

Va
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I Downsampling induces an aliasing pattern.
I Different downsamplings produce different patterns.
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Genie-aided peeling decoder
A genie indicates us

I if a check is connected to only one variable (singleton),
I in that case, the genie also gives the index of that variable.

Peeling decoder algorithm:
1. Find a singleton check: {X1,X8,X11}
2. Peel it off.
3. Repeat until nothing left.
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Genie-aided peeling decoder
A genie indicates us

I if a check is connected to only one variable (singleton),
I in that case, the genie also gives the index of that variable.

Success
Peeling decoder algorithm:

1. Find a singleton check: {X1,X8,X11}
2. Peel it off.
3. Repeat until nothing left.
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Hadamard property II: shift/modulation

Theorem (shift/modulation)
Given p 2 Fn

2,
xm+p

WHT ! Xk (�1)hp , ki.

Consequence
The signal can be modulated in frequency by manipulating the
time-domain samples.

SparseFHT 11 / 20 EPFL
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How to construct the Genie
Non-modulated Modulated

I Collision: if � 2 variables connected to same check.

I Xi (�1)hp , ii+Xj (�1)hp , ji

Xi+Xj
6= ±1, (mild assumption on distribution of X ).
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How to construct the Genie
Non-modulated Modulated

I Singleton: only one variable connected to check.

I Xi (�1)hp , ii

Xi
= (�1)hp , ii = ±1. We can know hp , ii!

I O(log2
N
K ) measurements sufficient to recover index i ,

(dimension of null-space of downsampling matrix H).
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Sparse fast Hadamard transform

Algorithm

1. Set number of checks per downsampling B = O(K ).
2. Choose C downsampling matrices H1, . . . ,HC .
3. Compute C(log2 N/K + 1) size-K fast Hadamard

transform, each takes O(K log2 K ).
4. Decode non-zero coefficients using peeling decoder.

Performance
I Time complexity – O(K log2 K log2 N/K ).
I Sample complexity – O(K log2

N
K ).

I How to construct H1, . . . ,HC ? Probability of success ?
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Very sparse regime

Setting

I K = O(N↵), 0 < ↵ < 1/3.
I Uniformly random support.
I Study asymptotic probability of failure as n!1.

Downsampling matrices construction

I Achieves values ↵ = 1
C , i.e. b = n

C .
I Deterministic downsampling matrices H1, . . . ,HC ,
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Balls-and-bins model

Uniformly random support model

I Theorem: Both constructions are equivalent.
Proof: By construction, all rows of Hi are linearly independent.

I Reduces to LDPC decoding analysis.
I Error correcting code design (Luby et al. 2001).
I FFAST (Sparse FFT algorithm) (Pawar & Ramchandran 2013).
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Extension to less-sparse regime

I K = O(N↵), 2/3  ↵ < 1.
I Balls-and-bins model not equivalent anymore.
I Let ↵ = 1� 1

C . Construct H1, . . . ,HC ,

I By construction: N (Hi)
TN (Hj) = 0.
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SparseFHT – Probability of success
Probability of success - N = 222
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SparseFHT vs. FHT

Runtime [µs] – N = 215
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Conclusion

Contribution
I Sparse fast Hadamard algorithm.
I Time complexity O(K log2 K log2

N
K ).

I Sample complexity O(K log2
N
K ).

I Probability of success asymptotically equal to 1.

What’s next ?
I Investigate noisy case.

SparseFHT 19 / 20 EPFL



Introduction Sparse FHT algorithm Analysis of probability of failure Empirical results Conclusion

Conclusion

Contribution
I Sparse fast Hadamard algorithm.
I Time complexity O(K log2 K log2

N
K ).

I Sample complexity O(K log2
N
K ).

I Probability of success asymptotically equal to 1.

What’s next ?
I Investigate noisy case.

SparseFHT 19 / 20 EPFL



Introduction Sparse FHT algorithm Analysis of probability of failure Empirical results Conclusion

Thanks for your attention!

Code and figures available at
http://lcav.epfl.ch/page-99903.html
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