

Summary

We present **FRIDA**—an algorithm for estimating directions of arrival of multiple wideband sound sources. The grid-less algorithm is applicable to arbitrary array layouts.

A Wishlist for DoA

Signal Model

- **Point sources** in the far field
- Cross-correlation between two microphones:

$$a_i = \sum_{k=1}^K \sigma_k^2(\omega_i) \mathrm{e}^{-j\omega_i \langle p_k,\,\Delta r
angle}$$

• A linear mapping from the (unknown) **uniformly sampled sinusoids**

$$b_i = \sum_{k=1}^K \sigma_k^2(\omega_i) \underbrace{\mathrm{e}^{-jm arphi_k}}_{ ext{same for all subbands}}$$

to the cross-correlations a_i .

Annihilation equations

-there exists a discrete filter $h \in \mathbb{C}^{K+1}$, such that

 $b_i * h = 0$ for all subbands *i*.

 $-DoA \varphi_k$ given by the *roots* of a polynomial with coefficients h

FRIDA: FRI-based DoA Estimation for Arbitrary Array Layout

Hanjie Pan, Robin Scheibler, Eric Bezzam, Ivan Dokmanić, and Martin Vetterli Audiovisual Communications Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

Algorithm

Constrained optimization

$$egin{array}{cc} & J \ \displaystyle \min_{b_1,\cdots,b_J} & \displaystyle \sum_{i=1}^J \|a_i-{
m G}_ib_i\|_2^2 \ {
m ubject to} & b_i*h=0 & {
m for } i=1,\cdots \end{array}$$

- non-convex optimization
- -an equivalent formulation involving h

$$\min_{h\in\mathcal{H}} \hspace{0.1in} h^{ ext{H}} \Lambda(h)$$

- —an iterative strategy [1]:
- for $loop \leftarrow 1$ to max. initializations do Initialize h with a random vector $h^{(0)}$; for $n \leftarrow 1$ to max. iterations do Build $\Lambda(h)$ with $h = h^{(n-1)}$; $\mathbf{2}$ Re-synthesize $b_i^{(n)}$ with the updated $h = h^{(n)}$; 3 if $\sum_{i=1}^{J} \|a_i - \mathbf{G}_i b_i^{(n)}\|_2^2 \leq \varepsilon^2$ then Terminate both loops;

5
$$b_i \leftarrow b_i^{(n)}$$
, $h \leftarrow h^{(n)}$

A) DoA estimation errors under different **noise levels** B) Number of resolved sources with different **separation angles**

 \cdots, J

)h

Experimental Setup

- A) Pyramic array 48 MEMS microphones and FPGA
- B) Setups of the loudspeakers in the audio room

Results

Experiment I

- ullet Up to $egin{array}{c} \mathbf{3} & \mathbf{s} \mathbf{0} \end{bmatrix}$ simultaneous speech sources
- All combinations of loudspeakers (Set 1)

Experiment III

• Two closely located sources $(5.5^{\circ} \text{ apart})$

DoA	FRIDA	MUSIC	SRP-PHAT
0 °	$-0.5\pm0.4^{\circ}$	$1.6\pm0.3^{\circ}$	$1.4\pm0.2^{\circ}$
5.5°	$4.6\pm0.2^{\circ}$	$-93.9\pm41.2^{\circ}$	$-38.1\pm8.6^{\circ}$

Reference and Code

[1] H. Pan, T. Blu and M. Vetterli. Towards Generalized FRI Sampling with an Application to Source Resolution in Radioastronomy, in IEEE Transactions on Signal Processing, vol. 65, num. 4, p. 821-835, 2017.

Code: http://go.epfl.ch/FRIDA

Experiment II

- 10 sources of white noise
- 9 microphones

