Refinement of Direction of Arrival Estimators by Majorization-Minimization Optimization on the Array Manifold

Robin Scheibler and Masahito Togami

Direction of Arrival Estimators

Abstract —The key idea of this work is to refine DOA estimates by local optimization using majorization-minimization. We derive two surrogate functions, quadratic and linear, and validate via experiments on synthetic and recorded signals. We demonstrate up to $17 \times$ **speed-up**.

Propagation Model

The measurement vector $\mathbf{x}_{kn} \in \mathbb{C}^M$ is

$$\mathbf{x}_{kn} = \mathbf{a}_k(\mathbf{q}) y_{kn} + \text{noise}$$

with direction vector $\mathbf{q} \in \mathbb{R}^3$, $\|\mathbf{q}\| = 1$, and with the **steering vectors**

$$\mathbf{a}_k(\mathbf{q}) = \begin{bmatrix} \cdots e^{j\omega_k \mathbf{d}_m^ op \mathbf{q}} \cdots \end{bmatrix}^ op$$

Generalized DOA Formulation

Goal Find local minima/maxima of

$$\mathcal{J}(\mathbf{q}) = \sum_{k=1}^{K} \mathbf{a}_k(\mathbf{q})^H \mathbf{V}_k \mathbf{a}_k(\mathbf{q}), \quad ext{s.t.} \quad \left\{ egin{array}{c} \|\mathbf{q}\| = 1 \ \mathbf{V}_k \succeq 0 \end{array}
ight.$$

Method	Opt	\mathbf{V}_k
SRP	Max	$\mathbb{E}[\mathbf{x}_{fn}\mathbf{x}_{fn}^H]$
MUSIC	Min	$\mathbb{E}[\mathbf{n}_{fn}\mathbf{n}_{fn}^{H}]$ (cov. mat. noise)
MVDR	Min	$\mathbb{E}[\mathbf{x}_{fn}\mathbf{x}_{fn}^{H}]^{-1}$

Objective is a Sum of Cosine

$$\mathcal{J}(\mathbf{q}) = 2\sum_{n>m} u_{mn} \cos(\psi_{mn} - \omega_k \Delta_{mn}^{ op} \mathbf{q}) + \operatorname{con}$$

with $\Delta_{mn} = \mathbf{d}_m - \mathbf{d}_n$, $u_{mn} = |(\mathbf{V}_k)_{mn}|$, $\psi_{mn} = \arg((\mathbf{V}_k)_{mn})$.

Conventional Optimization: Grid Search

1. Sample search space at locations $\hat{\mathbf{q}}_1, \ldots, \hat{\mathbf{q}}_L$

2. Choose $\mathbf{q}^{\star} = \arg \min \mathcal{J}(\hat{\mathbf{q}}_{\ell})$ $\ell \in \{1, \dots, L\}$

Problems

- Precision depends on L
- Curse of dimensionality ($L > 10^4$ for ~ 2 error in 3D)

Refinement by MM Optimization

- 1. Find initial DOA estimate with rough grid
- 2. Refine with MM iterations

$$\mathbf{q}_t \leftarrow rgmin_{q, \, \|\mathbf{q}\|=1} Q(\mathbf{q}, \mathbf{q}_{t-1})$$

where $Q(\mathbf{q}, \hat{\mathbf{q}})$ is a surrogate of $\mathcal{J}(\mathbf{q}).$

Key Ingredient: Quadratic Surrogate of Cosine [1]

Let θ , $\theta_0 \in \mathbb{R}$, $z_0 = \arg \min_{z \in \mathbb{Z}} |\theta_0 + 2\pi z|$, and $\phi_0 = heta_0 + 2\pi z_0$. Then,

$$\cos(\theta) \leq \frac{1}{2}\operatorname{sinc}(\phi_0)(\theta + 2\pi z_0)^2 + \dots$$

Quadratic Surrogate

The previous inequality is directly applicable to the objective

$$\mathcal{J}(\mathbf{q}) = \sum_{m>n} u_{mn} \cos(\psi_{mn} - \Delta_{mn}^{\top} \mathbf{q}) \leq \sum_{mn}$$

(PSD)

where \hat{u}_{mn} and $\hat{\psi}_{mn}$ depend on \mathbf{q}_{t-1} . This gives the update

 $\mathbf{q}_t \leftarrow \arg\min \mathbf{q}^\top \mathbf{D}(\mathbf{q}_{t-1})\mathbf{q} - 2\mathbf{v}(\mathbf{q}_{t-1})^\top \mathbf{q}$ subject to $\|\mathbf{q}\|^2 = 1$ (1)

with $D(\mathbf{q}_{t-1}) = \sum_{mn} \hat{u}_{mn} \Delta_{mn} \Delta_{mn}^{\top}$, and $\mathbf{v}(\mathbf{q}_{t-1}) = \sum_{mn} \hat{u}_{mn} \Delta_{mn} \Delta_{mn}^{\top}$ Efficient algorithm to solve (1) is availa

Linear Surrogate

A quadratic on bounded domain admits a linear surrogate:

nst.

 $\hat{u}_{mn}(\hat{\psi}_{mn}-\Delta_{mn}^{\top}\mathbf{q})^{2}+\ldots$

$$(\mathbf{q}_{t-1}) = \sum_{mn} \hat{u}_{mn} \hat{\psi}_{mn} \Delta_{mn}.$$
able [2]

$$\mathbf{q}_{t-1} + C(\mathbf{q}_{t-1})\mathbf{q}_{t-1})^{ op}\mathbf{q}_{t-1}$$

Experimental Validation

- Baseline: grid-search with 10000 points

Synthetic Reverberant Speech

Median Error, 12 channels, reverb. time ≈ 500 ms, 100 rep. Linear

Quadratic

Table 1: Median runtimes in seconds with the quadratic surrogate.

			SRP-PHAT		MUSIC	
Description	Grid	MM Iter.	1 src	2 src	1 src	2 src
fine grid-search proposed method	10000 100	0 30	4.55 0.35	4.58 0.42	4.57 0.27	4.48 0.37
speed-up			13×	$11 \times$	$17 \times$	12×

Recorded Anechoic Speech

Pyramic 48-channel array, anechoic, 540 positions [3]

References

[1] K. Yamaoka et al., Proc. WASPAA, Oct. 2019, pp. 130–134. [2] J. J. More, Optim. Method Softw., vol. 2, no. 3–4, pp. 189–209, Jan. 1993. [3] R. Scheibler et al., Proc. IWAENC, Sep. 2018, pp. 226–230. [4] https://github.com/LCAV/pyroomacoustics [5] https://github.com/fakufaku/doamm

• Proposed: grid-search with 100 points + 30 iterations MM