Independent Vector Analysis via Log-quadratically Penalized Quadratic Minimization
Robin Scheibler

Faster Blind Source Separation

Abstract -We propose a new algorithm for AuxIVA based BSS using majorization-minimization. Along the way, we solve a new type of non-convex optimization problem that we call log-quadratically penalized quadratic minimization.

Blind Source Separation by Independent Vector Analysis

Likelihood Function of Observed Data

$$
\mathcal{L}(\left\{\mathbf{W}_{f}\right\} \mid \underbrace{\mathbf{X}_{1}, \ldots, \mathbf{X}_{M}}_{\text {observation }})=\underbrace{\prod_{m=1}^{M} p\left(\mathbf{Y}_{m}\right)}_{\text {independence }} \underbrace{\prod_{f=1}^{F}\left|\operatorname{det}\left(\mathbf{W}_{f}\right)\right|^{2 N}}_{\text {change of variable }}
$$

Independent Vector Analysis [1, 2]
Estimate \mathbf{W}_{f} by minimizing log-likelihood $(G(\mathbf{Y})=-\log p(\mathbf{Y}))$

$$
\ell\left(\left\{\mathbf{W}_{f}\right\}\right) \approx \sum_{m} G\left(\mathbf{Y}_{m}\right)-2 N \sum_{f} \log \left|\operatorname{det} \mathbf{W}_{f}\right|
$$

AuxIVA [3]: Majorization-Minimization of $\ell\left(\left\{\mathbf{W}_{f}\right\}\right)$
Hypothesis We can majorize the log-pdf of the source

$$
G(\mathbf{Y}) \leq \sum_{f n} \widehat{G}_{f n}(\mathbf{Y})\left|(\mathbf{Y})_{f n}\right|^{2}
$$

Then there exists the upper bound function

$$
\ell\left(\left\{\mathbf{W}_{f}\right\}\right) \lesssim \ell_{+}\left(\left\{\mathbf{W}_{f}\right\}\right)=\sum_{f}\left[\sum_{m} \mathbf{W}_{m f}{ }^{H} \mathbf{V}_{m f} \mathbf{W}_{m f}-2 \log \left|\operatorname{det} \mathbf{W}_{f}\right|\right]
$$

$$
\begin{aligned}
& \text { Ideal AuxIVA Algorithm } \\
& \text { for loop } \leftarrow 1 \text { to max. iterations do } \\
& \qquad \begin{array}{l}
\mathbf{Y}_{m} \leftarrow \operatorname{demix}\left(\left\{\mathbf{W}_{f}\right\}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{M}\right) \\
\mathbf{V}_{m f}=\frac{1}{N} \sum_{n} \widehat{G}_{f n}\left(\mathbf{Y}_{m}\right) \mathbf{x}_{f n} \mathbf{x}_{f n}^{H} \\
\mathbf{W}_{f} \leftarrow \\
\underset{\mathbf{W} \in \mathbb{C}^{M \times M}}{\arg \min } \sum_{m} \mathbf{W}_{m}{ }^{H} \mathbf{V}_{m f} \mathbf{W}_{m}-2 \log |\operatorname{det} \mathbf{W}|
\end{array}
\end{aligned}
$$

roblem No closed form solution for the minimization

Block Coordinate Descent Algorithm

Minimize wrt to only part of \mathbf{W}_{f}

IP [3]	IP2 [4]	ISS [5]	
		1	
W_{f}	W_{f}		1

Iterative Projection Adjustement

Multiplicative updates of \mathbf{W}_{f} by

$$
\mathbf{T}_{m}(\mathbf{u}, \mathbf{q})=\mathbf{I}+\mathbf{e}_{m}\left(\mathbf{u}-\mathbf{e}_{m}\right)^{H}+\mathbf{q} \mathbf{e}_{m}^{\top}
$$

Apply M updates to \mathbf{W}_{f} sequentially for loop $\leftarrow 1$ to M do

$$
\mathbf{u}_{m}, \mathbf{q}_{m} \leftarrow \arg \min \ell_{+}\left(\mathbf{T}_{m}(\mathbf{u}, \mathbf{q}) \mathbf{W}_{f}\right)
$$

$$
\mathbf{W}_{f} \leftarrow \mathbf{T}_{m}\left(\mathbf{u}_{m}, \mathbf{q}_{m}\right) \mathbf{W}
$$

Solving the Update Equation

1. For \mathbf{u}, closed-form as a function of \mathbf{q} exists
2. Replace $\mathbf{u}^{\star}(\mathbf{q})$ in the objective leads to new problem
3. Solve Log-Quadratically Penalized Quadratic Minimization

$$
\min _{\mathbf{q} \in \mathbb{C}^{d}} q^{H} \mathbf{q}-\log \left((\mathbf{q}+\mathbf{v})^{H} \mathbf{U}(\mathbf{q}+\mathbf{v})+z\right)
$$

(LOPQM)
where $\mathbf{U} \in \mathbb{C}^{d \times d} \mathrm{PSD}, \mathbf{v} \in \mathbb{C}^{d}, z \geq 0$.

Experiments

Convergence (SI-SIR) as function of runtime
($16 \mathrm{kHz}, 1000$ sim. rooms, SNR 15 dB)

Solving LQPQM

The loss landscape of LQPQM has several local optima

Solving LQPQM
We can reduce the LOPQM to a 1D problem

$$
\min _{\lambda \in \mathbb{R}_{+}} g(\lambda) \text { subject to } \quad f(\lambda)=0
$$

where

$$
f(\lambda)=\lambda^{2} \sum_{m=1}^{d} \frac{\varphi_{m}\left|\hat{v}_{m}\right|^{2}}{\left(\lambda-\varphi_{m}\right)^{2}}+z-\lambda=0 .
$$

Theorem

- $g\left(\lambda_{1}\right) \leq g\left(\lambda_{2}\right)$ if $f\left(\lambda_{1}\right)=f\left(\lambda_{2}\right)=0$ and $\lambda_{1}<\lambda_{2}$
- For $\lambda>\phi_{\text {max }}$
-One, and only one, zero
$-f(\lambda)$ strictly descreasing
Thus λ^{\star} is the global minimum!

References

1] Kim et al., Proc. ICA, 2006
[2] Hiroe, Proc. ICA, 2006.
[3] Ono, Proc. WASPAA, 2011
[4] Ono, Proc. ASJ, 2018
[5] Scheibler, Ono, Proc. ICASSP, 2020.

