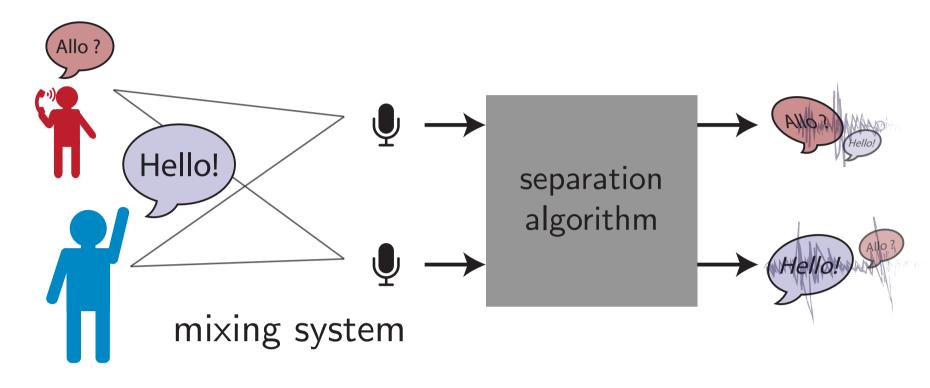
SDR—Medium Rare with Fast Computations Robin Scheibler

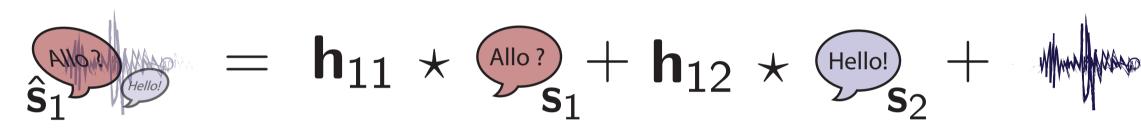
Evaluation of BSS Algorithms

Abstract —We revisit the widely used **bss eval metrics** [1] for source separation. We propose a **fast** algorithm for BSS Eval. In experiments, we assess speed and numerical accuracy. The speed-up is up to two orders of magnitude in some cases.

Signals Model

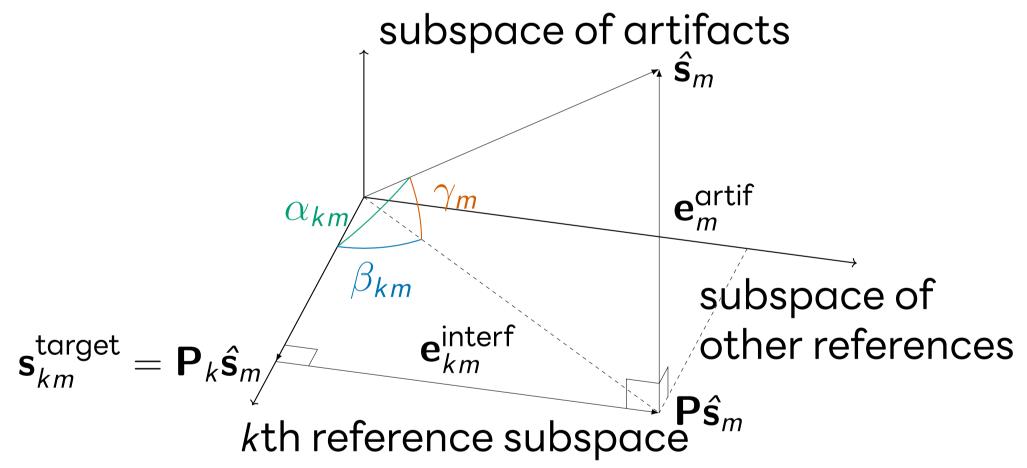


The estimated signals \hat{s}_m are convolutive mixtures of reference signals s_k , plus an artifact term



BSS Eval Metrics

Decomposes the estimated signals in three orthognal parts



- **s**^{target}: contribution of reference k
- e_{km}^{interf} : contribution of other sources
- e_m^{artif} : contribution of artifacts

Signal-to-Distortion Ratio (SDR)

$$\mathsf{SDR}_{km} = 10 \log_{10} rac{\|\mathbf{s}_{km}^{ ext{target}}\|^2}{\|\mathbf{e}_{km}^{ ext{interf}} + \mathbf{e}_{km}^{ ext{artif}}\|^2}$$

Conventional Algorithm

- 1. Compute statistics of ref./est. $O(M^2 T \log T)$
- 2. Solve large linear systems $O(ML^3)/O((ML)^3)$ (by Gaussian elimination)
- 3. Filter signals $O(M^2 T \log T)$

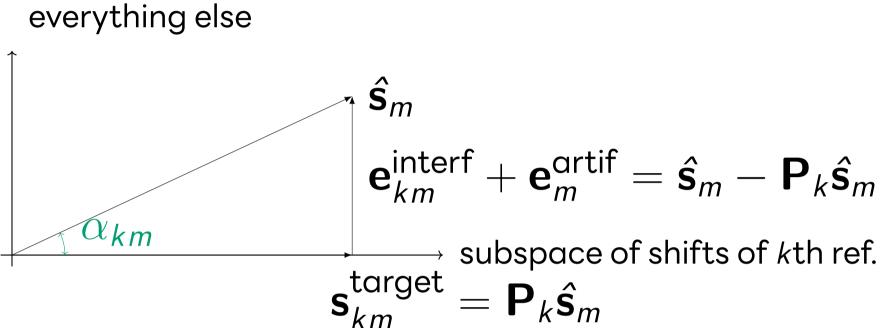
Fast BSS Eval

Key New Insight

The metrics are functions of the **subspace angles**!

- $SDR_{km} = -10 \log_{10} tan$ $SIR_{km} = -10 \log_{10} \tan(100)$
- $SAR_m = -10 \log_{10} \tan(100)$

Proof (SDR)



1. Definition of cosine: $\|\mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = \cos^2 \alpha_k$ 2. Pythagor: $\|\hat{\mathbf{s}}_m - \mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = \|\hat{\mathbf{s}}_m\|^2 - \|\mathbf{P}_k \hat{\mathbf{s}}_m\|^2$

Norm of Projection onto Shifts of s_k

Matrix \mathbf{A}_k contains shifts of \mathbf{s}_k in its columns, and the matrix $\mathbf{P}_k = \mathbf{A}_k (\mathbf{A}_k^{-1} \mathbf{A}_k)^{-1} \mathbf{A}_k^{\top}$ projects onto the subspace they span. Then,

$$\|\mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = (\mathbf{A}_k^{ op} \hat{\mathbf{s}}_m)^{ op} (\mathbf{A}_k^{ op} \mathbf{A}_k)^{-1} (\mathbf{A}_k^{ op} \hat{\mathbf{s}}_m)$$

Proposed Fast Algorithm

- 1. Compute $\mathbf{R}_k = \mathbf{A}_k^{\top} \mathbf{A}_k$ and $\mathbf{x}_{km} = \mathbf{A}_k^{\top} \hat{\mathbf{s}}_m$
- 2. Solve $\mathbf{R}_k \mathbf{h} = \mathbf{x}_{km}$, this is a **Toeplitz** system
- **3.** Compute $\cos^2 \alpha_{km} = \mathbf{x}_{km}^{\top} \mathbf{h}$
- 4. $SDR_{km} = 10 \log_{10} \frac{\cos^2 \alpha_{km}}{1 \cos^2 \alpha_{km}}$

Fast Toeplitz Solver

The system matrix \mathbf{R}_k is **Toeplitz** and can be solved quickly [3]

- Conjugate Gradient Algorithm
- Multiplication by \mathbf{R}_k in $O(L \log L)$ via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [3]

Experimental Validation

Python implementation in fast-bss-eval package

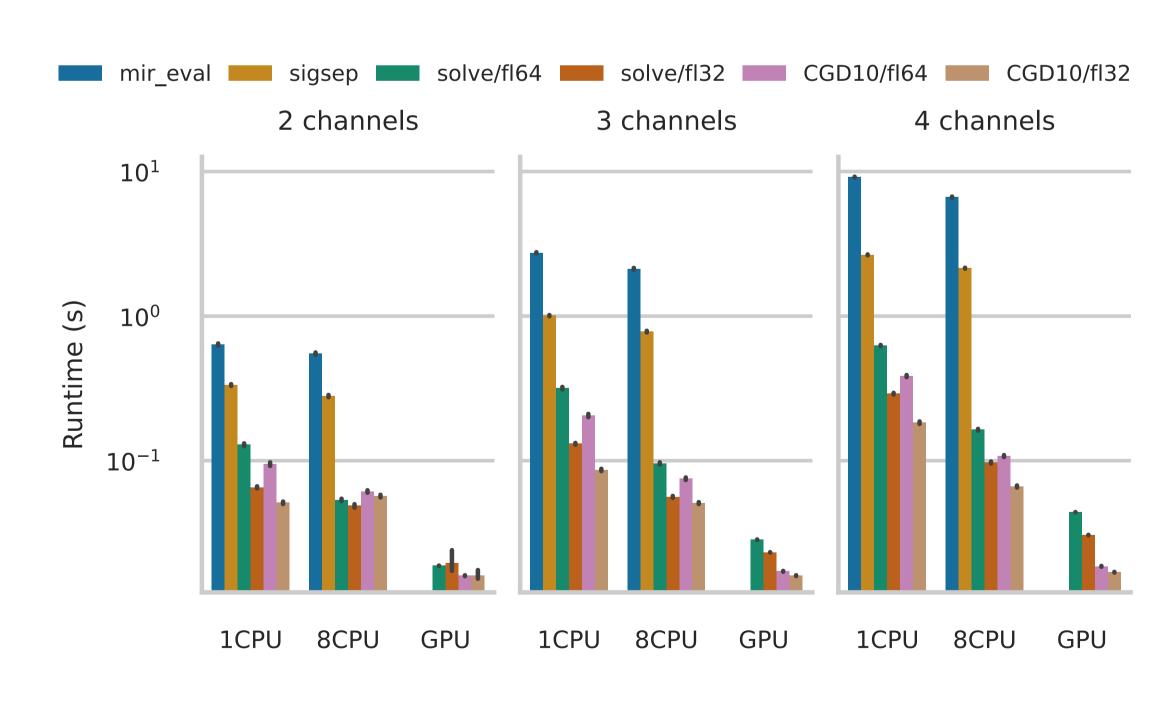
$$\alpha_{km}^2 \alpha_{km}^2$$
 $\beta_{km}^2 \beta_{km}^2 \gamma_{km}^2$

package mir_eval [4] sigsep [5] ci_sdr [6] fast-bss-eval SI

Accuracy

^{km}
$$_k \hat{oldsymbol{s}}_m \|^2 = 1 - \cos^2 lpha_{km}$$

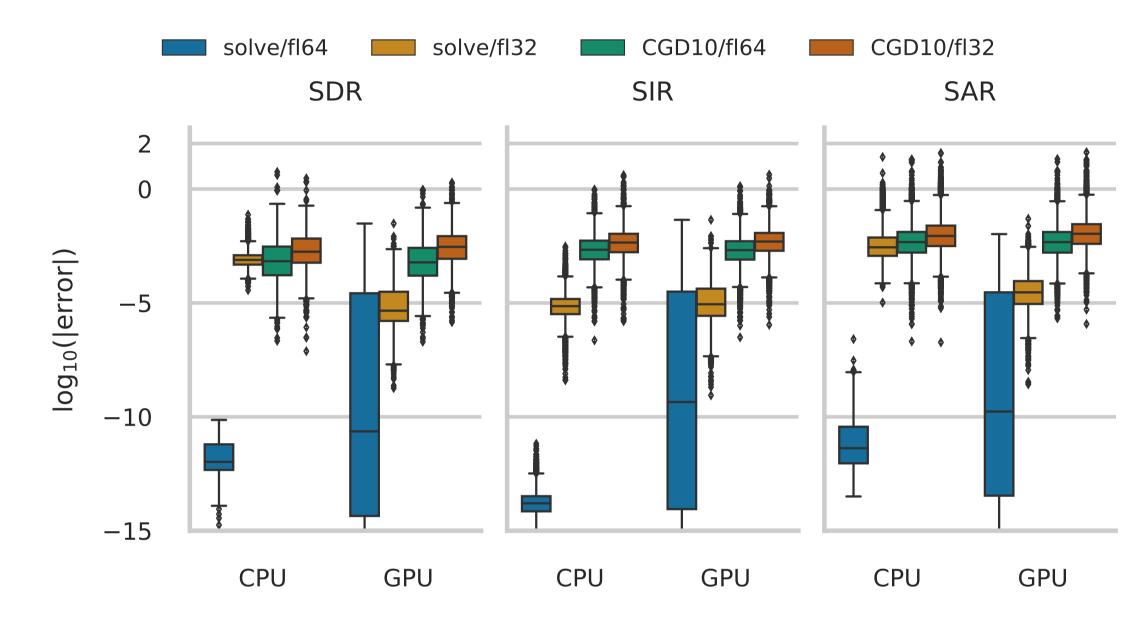
Speed



References

[1] Vincent et al., IEEE TASLP, Jun. 2006, pp. 1464–1469. [2] Le Roux et al., Proc. ICASSP, May 2019. [3] Chan and Ng, SIAM Review, Sep. 1996, pp. 427–482.

- [4] Raffel, Proc. ISMIR, Oct. 2014.
- [5] https://github.com/sigsep
- [6] Boeddeker et al., Proc. ICASSP, Jun. 2021.



pip install fast-bss-eval

netrics	backend
SDR/SIR/SAR	numpy
SDR/SIR/SAR	numpy
SDR	torch
SDR/SIR/SAR	numpy/torch