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Scenario

¢ Signal model:
y=Hx-+Hz+n

e H, and H, constructed from geometry
e Beamformer response

u, = Hfg u, = HZTg



Minimum variance distortionless response
beamformer




Minimum variance distortionless response
beamformer

system delay 7T




Clues from perceptual acoustics
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useful echoes partially useful detrimental reverberant tail
30 ms 65 ms
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J. Lochner, J.F. Burger, The Influence of Reflections on Auditorium Acoustics, 1964.



Relaxing the distortionless constraint



Relaxing the distortionless constraint

system delay 7T T+ K -




Image source picking
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Image source picking

e MVDR: Sources within ¢7 contribute energy
Perceptual: Sources within ¢(7 + k) contribute energy




Image source picking

e MVDR: Sources within ¢7 contribute energy
e Perceptual: Sources within ¢(7 + ) contribute energy




Signal-to-interference-and-noise metric

Response very distorted : not practical
Upper bound
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Output SINR [dB]
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SINR improvements

B Rake MaxSINR
@—@ Rake Perceptual
VvV Rake MVDR

Number of images K
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Contribution

¢ A distortionless raking beamformer
A perceptually motivated raking beamformer

Time-domain designs allow control on:

e Delay
e Pre-echoes

SINR increases with number of image sources
Python framework

Conclusion
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Conclusion

Contribution

¢ A distortionless raking beamformer
A perceptually motivated raking beamformer

Time-domain designs allow control on:

e Delay
e Pre-echoes

SINR increases with number of image sources
Python framework

What's next ?

e Robust formulations
e Experiments
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Thanks for your attention!

Code and figures available at
http://lcav.github.io/
TimeDomainAcousticRakeReceiver/
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