Raking Echoes in the Time-Domain

Robin Scheibler Ivan Dokmanić Martin Vetterli

School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne, Switzerland

> Tmonday Afternoon Meeting April 1, 2015

O

Q

Ч

O

Outline

- 1. Model and notation
- 2. Raking beamformers
- 3. Results

•

a

:

Mic 1

0000

• Signal model:

$$y = H_x x + H_z z + n$$

- H_x and H_z constructed from geometry
- Beamformer response

$$\boldsymbol{u}_x = \boldsymbol{H}_x^T \boldsymbol{g} \qquad \boldsymbol{u}_z = \boldsymbol{H}_z^T \boldsymbol{g}$$

x

*

0000

• Signal model:

$$y = H_x x + H_z z + n$$

- H_x and H_z constructed from geometry
- Beamformer response

$$\boldsymbol{u}_{x} = \boldsymbol{H}_{x}^{T} \boldsymbol{g} \qquad \boldsymbol{u}_{z} = \boldsymbol{H}_{z}^{T} \boldsymbol{g}$$

• Signal model:

$$y = H_x x + H_z z + n$$

- H_x and H_z constructed from geometry
- Beamformer response

$$\boldsymbol{u}_x = \boldsymbol{H}_x^T \boldsymbol{g} \qquad \boldsymbol{u}_z = \boldsymbol{H}_z^T \boldsymbol{g}$$

 x_{\bullet}

≯ ²

0000

• Signal model:

$$y = H_x x + H_z z + n$$

- H_x and H_z constructed from geometry
- Beamformer response

$$\boldsymbol{u}_{x} = \boldsymbol{H}_{x}^{T} \boldsymbol{g} \qquad \boldsymbol{u}_{z} = \boldsymbol{H}_{z}^{T} \boldsymbol{g}$$

Minimum variance distortionless response beamformer

$$\underset{\boldsymbol{g}}{\mathsf{minimize}} \ \mathbb{E}\|\boldsymbol{g}^T\boldsymbol{y}\|^2 \quad \mathsf{subject to} \ \boldsymbol{H}_{x}^T\boldsymbol{g} = \delta_{\tau}$$

Minimum variance distortionless response beamformer

Clues from perceptual acoustics

J. Lochner, J.F. Burger, The Influence of Reflections on Auditorium Acoustics, 1964.

Relaxing the distortionless constraint

$$\underset{\boldsymbol{g}}{\text{minimize}} \ \mathbb{E} \|\boldsymbol{g}^T(\boldsymbol{H}_{\boldsymbol{z}}\boldsymbol{z} + \boldsymbol{n})\|^2 \quad \text{subject to} \ \mathcal{M}\boldsymbol{H}_{\boldsymbol{x}}^T\boldsymbol{g} = \delta_{\tau}$$

Relaxing the distortionless constraint

- MVDR: Sources within $c\tau$ contribute energy
- Perceptual: Sources within $c(\tau + \kappa)$ contribute energy

- MVDR: Sources within $c\tau$ contribute energy
- Perceptual: Sources within $c(\tau + \kappa)$ contribute energy

- MVDR: Sources within $c\tau$ contribute energy
- Perceptual: Sources within $c(\tau + \kappa)$ contribute energy

- MVDR: Sources within $c\tau$ contribute energy
- Perceptual: Sources within $c(\tau + \kappa)$ contribute energy

Performance metric:

$$\mathsf{SINR} = \mathbb{E}\left[\frac{\|\boldsymbol{g}^T\boldsymbol{H}_{x}\boldsymbol{x}\|^2}{\|\boldsymbol{g}^T(\boldsymbol{H}_{z}\boldsymbol{z} + \boldsymbol{n})\|^2}\right]$$

Optimal beamformer:

- Response very distorted : not practical
- + Upper bound

Performance metric:

$$\mathsf{SINR} = \mathbb{E}\left[\frac{\|\boldsymbol{g}^T\boldsymbol{H}_{x}\boldsymbol{x}\|^2}{\|\boldsymbol{g}^T(\boldsymbol{H}_{z}\boldsymbol{x} + \boldsymbol{n})\|^2}\right]$$

· Optimal beamformer:

- Response very distorted : not practical
- + Upper bound

Performance metric:

$$\mathsf{SINR} = \mathbb{E}\left[\frac{\|\boldsymbol{g}^T\boldsymbol{H}_{x}\boldsymbol{x}\|^2}{\|\boldsymbol{g}^T(\boldsymbol{H}_{z}\boldsymbol{z} + \boldsymbol{n})\|^2}\right]$$

Optimal beamformer:

- Response very distorted : not practical
- + Upper bound

Performance metric:

$$\mathsf{SINR} = \mathbb{E}\left[\frac{\|\boldsymbol{g}^T\boldsymbol{H}_{x}\boldsymbol{x}\|^2}{\|\boldsymbol{g}^T(\boldsymbol{H}_{z}\boldsymbol{z} + \boldsymbol{n})\|^2}\right]$$

Optimal beamformer:

- Response very distorted : not practical
- + Upper bound

SINR improvements

Conclusion

Contribution

- · A distortionless raking beamformer
- A perceptually motivated raking beamformer
- Time-domain designs allow control on:
 - Delay
 - Pre-echoes
- SINR increases with number of image sources
- Python framework

What's next?

- Robust formulations
- Experiments

Conclusion

Contribution

- A distortionless raking beamformer
- A perceptually motivated raking beamformer
- Time-domain designs allow control on:
 - Delay
 - Pre-echoes
- SINR increases with number of image sources
- Python framework

What's next?

- Robust formulations
- Experiments

Thanks for your attention!

Code and figures available at

http://lcav.github.io/
TimeDomainAcousticRakeReceiver/