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Echoes Help Indoor Processing
• beamforming
• source localization
• self-localization

What about speech separation ?
1. Is speech separation easier with echoes than without ?
2. Full RIR vs a few early reflections ?
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Our Methodology

1. Assume knowledge of a few (1-6) early echoes
2. Plug into multichannel NMF 1

3. Three baseline scenarios
• Anechoic conditions
• Learn transfer functions
• Ignore reverberation (i.e. consider 0 echoes)

4. Numerical Experiments

1Ozerov & Févotte, 2010
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Outline

1. Approximate Propagation Model

2. NMF Algorithms

3. Results from Numerical Experiments
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Approximate Propagation Model



Image Microphone Model

5



Image Microphone Model

5



Image Microphone Model

5



Image Microphone Model

5



Image Microphone Model

5



Partial Room Impulse Responses

hjm(t) =
K∑

k=0
αk

jmδ(t−tk
jm)+εjm(t)
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Why should that help ?
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NMF Algorithms



Non-negative Spectrogram Source Model

Multiplicative Updates View (Lee & Seung 2001)
Source signal’s magnitude spectrogram decomposes non-negatively

|Xj | = DjZj

Expectation Maximization View (Ozerov & Févote 2010)
Source signal’s variance spectrogram decomposes non-negatively

Xj [f , n] ∼ CN (0, (DjZj)fn)

In this work: Dj is pre-trained, known dictionary
9
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Source signal’s variance spectrogram decomposes non-negatively

Xj [f , n] ∼ CN (0, (DjZj)fn)

In this work: Dj is pre-trained, known dictionary
9



Multiplicative Updates - NMF

Microphone magnitude spectrogram model

V̂m =
∑

j
diag(|Ĥmj |)DjZj

Minimize Itakura-Saito divergence

CMU(Zj) =
∑
mfn

dIS(Vm[f , n] | V̂m[f , n]) + γ
∑

j
‖Zj‖1

• Efficient multiplicative update rules (Ozerov & Févotte 2010)
• Regularization needed for large number of latent variables
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Expectation Maximization - NMF

Probabilistic Model
Source are complex Gaussian with low-rank spectrogram

Xj [f , n] ∼ CN (0, (DjZj)fn)

Microphone signals have variance

Σy[f , n] = Ĥ[f ]Σx[f , n] ĤH [f ] + Σb[f , n],

Minimize Negative Log-likelihood

CEM(Zj) =
∑
fn

trace
(

y[f , n]y[f , n]HΣ−1
y [f , n]

)
+ log det Σy[f , n]

Efficiently minimized by Expectation-Maximization algorithm
(Ozerov & Févotte 2010)
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Pre-trained Dictionaries

Speaker Dependent

Universal
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Remarks on Using a Universal Dictionary

Remark 1: Anechoic separation cannot work!

V̂m =
∑

j
DjZj → V̂m =

∑
j

DZj = D
∑

j
Zj

Remark 2: TF makes universal dict. speaker specific

V̂m =
∑

j
(HmjD)Zj

Remark 3: EM-NMF with Universal Dictionary

• Unclear how to enforce sparsity in EM (to us)
• Left for future work
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Results from Numerical Experiments



Experimental Setup

Conditions
# sources 2
# mics 3

STFT 2048
half-overlap, Hann win

Simulation with
pyroomacoustics
T60 ∼ 100 ms

Baselines
• Anechoic
• Learn TF
• Ignore reverb

6 m

3 m
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2.5 m

4 m
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Numerical Experiments Results
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MU-NMF – Speaker Dependent
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EM-NMF – Speaker Dependent
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MU-NMF – Universal
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MU-NMF – Universal: Regularization

Recall

CMU(Zj) =
∑
mfn

dIS(Vm[f , n] | V̂m[f , n]) + γ
∑

j
‖Zj‖1

Number of echoes K

anechoic learn 0 1 2 3 4 5 6

γ = 10 10−1 10 10−4 0 0 0 0 0

Table : Value of regularization parameter.

Partial RIR regularizes universal dictionary!
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Conclusion & Future Work

Conclusion
• Single echo improves performance
• Enables universal dictionary
• First few echoes most important

Future Work
• Compare to BSS
• Include (deeply) learnt models
• Underdetermined case

Thank you! Questions ?
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