# End-to-end Multi-speaker ASR with Independent Vector Analysis

Robin Scheibler<sup>1</sup>, Wangyou Zhang<sup>2</sup>, Xuankai Chang<sup>3</sup>, Shinji Watanabe<sup>3</sup>, Yanmin Qian<sup>2</sup>

<sup>1</sup>LINE, <sup>2</sup>SJTU, <sup>3</sup>CMU

SLT2023



#### End-to-end Multispeaker ASR with Advanced Frontend

#### MIMO-Speech [Chang2019, Zhang2020, Zhang2021]

- jointly train frontend and ASR model
- use non-parallel data, i.e., mixture/transcript
- demonstrate good ASR and separation performance



# **Conventional vs Independent Vector Analysis Frontend**

### Beamforming (e.g., MVDR)



- 1. Masks: joint (SIMO)
- 2. Beamformers: one-by-one

### Pro/Con

- + Non-iterative
- Stability issues (matrix inv.)
- Brittle mask estimation

# Neural IVA (this work)



- 1. Masks: one-by-one (SISO)
- 2. Beamformers: joint

# Pro/Con

- + Flexible number of speakers
- + Stable IVA algo. [Nakashima2020]
- Iterative

# 1. Extension of IVA to overdetermined case:

- Time-decorrelation Iterative Source Steering (T-ISS) [Nakashima2021]
- T-ISS with neural source model [Saijo2022]
- New: overdetermined (more mics than sources)
- 2. Joint training of neural IVA frontend and ASR
  - Integration into ESPnet MIMO-Speech
  - Demonstrate robustness to noise mismatch
  - Demonstrate **flexible** number of speakers

#### **Experiment 1: Robustness to Noise Mismatch**

| clean : WSJ1                      | 2 sources           |
|-----------------------------------|---------------------|
| noise1: WSJ1 + CHiME3 (noise)     | Joint CTC-Attention |
| noise2: WSJ1 + TUT environ. sound | IVA 15 iterations   |

|               |                 |              | WER (%)↓              |                       | SIR (dB)↑           |                     |
|---------------|-----------------|--------------|-----------------------|-----------------------|---------------------|---------------------|
| Test set      | Train           | Matched      | BF                    | IVA                   | BF                  | IVA                 |
| WSJ1 clean    | clean           | $\checkmark$ | 9.57                  | 9.16                  | 13.9                | 16.8                |
| WSJ1 + noise1 | clean<br>noise1 | ×<br>✓       | 17.12<br><b>11.40</b> | <b>12.48</b><br>11.80 | 12.3<br><b>14.7</b> | <b>15.6</b><br>14.4 |
| WSJ1 + noise2 | clean<br>noise1 | ×<br>×       | 31.36<br>15.17        | 14.55<br>14.75        | 6.3<br>10.0         | 13.7<br>12.3        |

#### Number of frontend parameters

**BF** 23.15 M VS **IVA 2.57 M** 

Re-use model trained on 2-speakers mixtures

| Sources | Train  | $WER\downarrow$ | SIR ↑   |
|---------|--------|-----------------|---------|
| 3       | clean  | 17.80 %         | 10.2 dB |
|         | noise1 | 16.19 %         | 9.9 dB  |
| 4       | clean  | 33.06 %         | 5.8 dB  |
|         | noise1 | 30.44 %         | 6.1 dB  |

Note: Neural BF cannot be applied due to SIMO mask model

### torchiva: Pytorch Toolbox for IVA

```
stft = torchiva.STFT(n_fft=4096, hop_length=1024)
separator = torchiva.T_ISS(n_iter=10)
```

audio, fs = torchaudio.load("multichannel\_mixture.wav")

```
X = stft(audio)
Y = separator(X)
y = stft.inv(Y)
```

torchaudio.save("separated\_sources.wav", y, fs)

#### Summary

- IVA = SISO neural model + joint separation filter estimation
- joint training with ASR model
- torch IVA toolbox https://git.linecorp.com/speechresearch/torchiva

#### Advantage of IVA frontend in MIMO speech

- agnostic to # speakers/channels
- very robust to domain mismatch
- small model size (9x smaller)

Chang2019 Chang et al., MIMO-SPEECH: End-to-End Multi-Channel Multi-Speaker Speech Recognition, 2019, https://arxiv.org/abs/1910.06522

- Zhang2020 W. Zhang et al., End-to-End Far-Field Speech Recognition with Unified Dereverberation and Beamforming, 2020, https://arxiv.org/abs/2005.10479
- Zhang2021 Zhang et al., End-to-End Dereverberation, Beamforming, and Speech Recognition with Improved Numerical Stability and Advanced Frontend, 2021, https://arxiv.org/abs/2102.11525

Nakashima2021 Nakashima et al., Joint Dereverberation and Separation with Iterative Source Steering, 2021, https://arxiv.org/abs/2102.06322

Saijo 2022 Saijo & Scheibler, Independence-based Joint Dereverberation and Separation with Neural Source Model, 2022, https://arxiv.org/abs/2110.06545