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Abstract

This work can be divided into two distinct parts. The first one is a survey of
the state-of-the-art in ranging and localization techniques applied to sensor
networks. This is a preliminary study for the implementation of a distributed
ranging protocol for Impulse Radio - Ultra Wide Band (IR-UWB) network.
The type of measurement, practical measure scenarios as well as algorithms
for ranging are revised. A performance comparison of Least-Squares and
Maximum Likelihood localization was done to get an understanding of the
behavior and limitations of classical techniques when the measurement noise
is non-Gaussian. Techniques of interest for UWB sensor networks are iden-
tified. The second part is the modelling of the synchronization error for
a 802.15.4a energy-detector receiver. Synchronization is one of the main
source of error when doing ranging using UWB. Nevertheless, most studies
model it as Gaussian noise on the distance measurement. However this is
far from what happens on practical UWB channels and non-Gaussian noise
leads to serious degradation of performance of localization algorithms. It is
therefore vital to get a good understanding of the synchronization error to
help design efficient ranging schemes.
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1 Survey of Localization Techniques in Sensor Net-

works

1.1 Types of Measurements

The problem of localization is essentially a geometrical problem. As such,
there is two types of measurements that can be used to solve it : angles and
distances. The main methods to take those measurements using a radio link
are summarized here. For more detailed surveys, see [1, 2, 3].

Direction Of Arrival (DOA) The angle measurements are usually car-
ried out as DOA estimation (sometimes also called Angle Of Arrival). This
technique is related to beamforming and thus requires an antenna array.
However, an antenna array is typically not available on sensors as they must
be as small and cheap as possible.

Received Signal Strength (RSS) RSS is defined as the received sig-
nal power. It is used to estimate the distance of the source of the signal.
However, on a typical wireless link the received power behaves in a particu-
larly unpredictable fashion. That’s why it is preferable to use more reliable
techniques such as the ones that will be described now.

Time Of Arrival (TOA) This technique uses the knowledge of the trans-
mission and arrival times, tt and ta, to compute the propagation time. Then,
the distance can be roughly estimated as :

r = tprop × c = (ta − tt) × c, (1)

where tprop is the propagation time and c the speed of light. As a rule of
thumb, 1 ns translates roughly to 30 cm. In the case of one-way transmission,
synchronization of the clocks of the transmitter and receiver is required. To
avoid this, two-way transmissions can be used (cf. 1.2.2 for more details).
But, in this case the processing time tproc at the target node must be taken
into account and we have :

tprop =
ta − tt − tproc

2
. (2)

The TOA method is particularly suitable for UWB communication as it
can achieve a very fine time resolution.
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Time Difference Of Arrival (TDOA) Instead of trying to estimate
the distance between the target and a reference node, TDOA attempts to
estimate the difference of the distance between the target and a first reference
node and the distance between the target and a second reference node.
Supposing we have N reference nodes n1 to nN that want to localize a
target node T , we don’t use the propagation time, but instead the difference
of the propagation times to two reference nodes ni and nj :

∆tij = (tia − tt) − (tja − tt) = tia − tja. (3)

Therefore the difference of distances is :

∆rij = ri − rj = (tia − tt) × c − (tja − tt) × c = (tia − tja) × c (4)

Therefore, the clock of the target node need not be synchronized with
the reference nodes, but the reference nodes have to be synchronized with
each others. This requirement can however be overcome by using differential
TDOA (dTDOA) as described in [4].

This method as well is very suitable for UWB networks as it also implies
timing measurements.

1.2 Practical Distance Measurements Scenarios

Before running any localization algorithm, we need a protocol that allows the
reference nodes to make the geometrical measurements in an efficient way.
From the different possible measurements presented in the last section, we
only retain TOA and TDOA as they don’t require any specialized hardware
on top of the UWB radio transceiver and give the best performance. DOA
requires at least two antennas while RSS gives at most poor performance.
The latter could eventually be used in addition to TOA or TDOA to refine
the measurement. However, this is left for further work.

In many cases, synchronization of the clocks of the nodes reduce the com-
munication overhead when doing the measurements (e.g. one-way against
two-way TOA). However maintaining clock synchronization in a sensor net-
work might be very costly or even not feasible at all. Therefore, we analyze
scenarios with full, partial and no clock synchronization to get an idea of
the overhead introduced by the lack of synchronization.

The processing and exchange of measurements between the reference
nodes needed for the localization are not addressed here.
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Figure 1: Message exchange scenarios for the measurements of TOA with
(a) full synchronization (b) partial synchronization.

1.2.1 Scenario considered and assumptions

We assume the nodes lie on a 2D plane. There is N quasi static reference
nodes n1 to nN who already know their position with a high degree of
accuracy. This is justified by the fact that if the nodes don’t move frequently,
they have plenty of time to perform averaging on several measurements and
get a good estimate of their relative positions. Those reference nodes try to
locate a relatively slow moving target node nt. The slow moving assumption
only ensures that we don’t have severe time constraint while performing
localization of nt.

Regarding synchronizations of the clock of the nodes, we study three
different situations :

• The clocks of all the nodes are synchronized (full synchronization).

• Only the clocks of the reference nodes are synchronized (partial syn-
chronization).

• All the clocks are asynchronous (no synchronization).

The ways synchronization can be achieved are described in section 1.2.4.

1.2.2 TOA

Full Synchronization In case of TOA and full synchronization, the fol-
lowing scenario, illustrated in Fig. 1 can be followed :
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Figure 2: Message exchange scenarios for the measurements of (a) asyn-
chronous TOA (b) TDOA (partial synchronization).

1. One of the reference nodes sends a message to nt to request localiza-
tion.

2. Upon reception of the request, nt broadcast a message containing a
timestamp of tt, the transmission time.

3. When receiving this message, the reference nodes can subtract the
arrival time ta to tt and get the propagation time.

4. Then, the reference nodes cooperate to localize nt using the propaga-
tion time information.

Partial Synchronization The following scenario is illustrated in Fig. 1 :

1. One of the reference nodes (i.e. n1) sends a message to the target node
to request localization. In this message, n1 inserts tt, the time of the
transmission of the message.

2. Upon reception, the target node broadcasts a message containing tt to
all reference nodes.

3. The the arrival times at the reference nodes n1 to nN , respectively
denoted by t1a to tNa are recorded by the reference nodes.

4. Then, the reference nodes cooperate to localize nt.
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In this case, we obtain the propagation time from n1 to nt added to the
propagation from nt to ni (plus some processing time tproc at nt). This
leads to the following sets of measurements :

m1 = t1a − tt = 2t1prop + tproc

m2 = t2a − tt = t1prop + tproc + t2prop

...

mN = tNa − tt = t1prop + tproc + tNprop

Then, knowing tproc we can recover the propagation times :

tiprop = mi −
m1 + tproc

2
, i = 1, . . . , N (5)

No Synchronization In this case, every reference node need to perform
a two-way message exchange with nt Fig. 2 :

1. ni sends a message to nt to request a distance measurement. ni records
the time tit it sent this message.

2. nt replies to ni. This adds a delay tiproc to the round-trip time.

3. Using the time of arrival tia, ni can compute the propagation time as :

tiprop =
tia − tit − tiproc

2
(6)

4. This is repeated by every reference node, until all of them have a
measurement.

5. The reference nodes cooperate to localize nt.

1.2.3 TDOA

TDOA requires only the synchronization of the reference nodes. Therefore,
full synchronization does not bring any further advantage than partial syn-
chronization and is not considered. As TDOA cannot be applied to the
asynchronous case, it is not considered as well. However, there exists asyn-
chronous schemes that use differential TDOA that should be studied as well,
for example [4].
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Partial Synchronization The following scenario is illustrated in Fig. 2:

1. One of the reference nodes sends a message to nt to request localiza-
tion.

2. Upon reception of the request, nt broadcasts a message to the reference
nodes.

3. The reference nodes will record the time of arrival t1a to tNa of this
message.

4. Then, this information is exchanged between the different reference
nodes and the TDOA measurements as described in section 1.1 can be
used to localize the target.

1.2.4 Clock Synchronization

There is basically two alternatives to synchronize the clocks of the nodes :

1. Terrestrial Radio Clock Synchronization : In many countries an atomic
clock time is broadcast using radio waves. It is a straightforward
and cheap way of synchronizing sensors. The hardware requirement
is also quite low as it is implemented in many very low-cost alarm
clocks widely available on the market. However, the precision of such
a system should be verified.

2. Clock Synchronization Algorithms : Many such algorithms have been
proposed. For a survey of those, see [5]. However, the synchronization
obtained is only of the order of ten millisecond which is by far not
sufficient for ranging applications.

To give an idea of the precision we need, consider that 1 nanosecond and
1 millisecond are roughly equivalent to respectively 30 centimeters and 300
meters. Therefore for a precision in the order of the meter we need less than
3 ns and in the order of ten meters we need less than 30 ns.

1.2.5 Trade-off between synchronization and overhead

Synchronization of the nodes’ clock reduces considerably the overhead as it
result in a single broadcast from the target node. However, the precision of
synchronization algorithms is not sufficient for ranging applications. On top
of that, such algorithms would introduce overhead superior to the gain due
to synchronization. The only alternative would be synchronization from an
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external clock, like terrestrial radio clock. However, the cost in hardware
and the precision of such a system is not clear and should be studied.

1.2.6 Sources of errors in TOA and TDOA

• Synchronization errors at the receiver directly affect both TOA and
TDOA. The distribution of the synchronization error with an energy-
detection receiver for 802.15.4a is studied in Section 2.

• Processing time tproc when using schemes that require more than a
single message to be exchanged.

• Clocks synchronization errors when using synchronous schemes.

• Clock drift and jitter.

• Circuitry induced delays.

1.3 Localization of Isolated Nodes

Once we have taken those measurements, we still need to compute the co-
ordinates of nt. When using TOA, the problem is known as trilateration.
It boils down to finding the intersection of N circles centered on n1 to nN

with radius r1 to rN , where ri = tiprop × c. In the case of TDOA, we speak
of multilateration and the problem is to find the intersection of hyperbolas
[6]. Here, we concentrate on TOA localization but similar methods can be
used with TDOA.

First, the basic trilateration with no measurement error is recalled.
Then, two estimation methods used to mitigate measurement errors are
presented : Least-Squares and Maximum Likelihood estimation.

1.3.1 Trilateration

When there is no measurement error, three reference nodes are sufficient
to localize nt on the plane. Without loss of generality we assume n1 to
be at the origin, n2 to lie on the x-axis with coordinate (a; 0) and n3 to
have coordinate (b; c) as shown in Fig. 3. Then the solution of the following
system of circle equations gives the position (x; y) of nt :















x2 + y2 = r2
1 (i)

(x − a)2 + y2 = r2
2 (ii)

(x − b)2 + (y − c)2 = r2
3 (iii)

(7)
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Figure 3: (a) Trilateration (b) Least-Squares Estimation of the intersection
of the Lines Of Positons (LOP)

By replacing y2 = r2
1 − x2 in (ii) and x2 = r2

1 − y2 in (iii) we obtain :







x =
a2+r2

1−r2
2

2a

y =
b2+c2+r2

1−r2
3

2c
− b

c
x

(8)

However, when measurement errors are present, all the circles will not
intersect at the same point anymore. Therefore we need to use some more
advanced technique to find the best estimate for the position of xt according
to some error function.

1.3.2 Least-Squares Estimation (LSE)

When measurement noise is present, a way of mitigating the localization
error is to use a least-squares strategy [7]. Consider the N reference nodes
n1 to nN with respective coordinates (x1; y1) to (xN ; yN ) and the target
node nt with unknown coordinates (xt; yt). Then, the distance between ni

and nt can be expressed as :

ri =
√

(xi − xt)2 − (yi − yt)2 (9)
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Now, by squaring and subtracting Eq. (9) with respect to nodes nk and nl,
k 6= l, we obtain :

r2
k − r2

l = (xk − xt)
2 − (yk − yt)

2 − (xl − xt)
2 + (yl − yt)

2 (10)

By rearranging the terms in this equation we get:

(xk − xl)xt + (yk − yl)yt =
1

2
(‖nk‖2 − ‖nl‖2 + r2

l − r2
k) (11)

where ‖ni‖2 = x2
i + y2

i , the squared norm of the vector position of ni. Note
that this equation is linear in the unknown xt and yt. This actually define a
straight line, called Line Of Position (LOP), going through the intersections
of the two circles centered on nk and nl as shown in Fig. 3. Without noise,
all those LOP intersect at the position of nt. However, when ri is replaced
by its noisy TOA measurement r̂i the lines don’t intersect anymore and we
get the following equation:

(xk − xl)xt + (yk − yl)yt =
1

2
(‖nk‖2 − ‖nl‖2 + r̂2

l − r̂2
k). (12)

But with N reference nodes, we get at most N(N − 1)/2 such linear equa-
tions. Therefore, we can find the least-squares estimate of the coordinates
of nt. Let’s first define :

A =













(x2 − x1) (y2 − y1)
(x3 − x1) (y3 − y1)

...
...

(xN − x1) (yN − y1)













, (13)

and

b =













1
2(‖n2‖2 − ‖n1‖2 + r̂2

1 − r̂2
2)

1
2(‖n3‖2 − ‖n1‖2 + r̂2

1 − r̂2
3)

...
1
2(‖nN‖2 − ‖n1‖2 + r̂2

1 − r̂2
N )













. (14)

Then, the LSE of θ = [xt, yt]
T can be obtained as :

θ̂ = (AT A)−1AT b (15)

Here, we only used the lines generated by the intersection of the circle cen-
tered in n1 with the other circles, but in practice we could use all the straight
lines generated by all pairs of circles.
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This method has the advantage to be non-parametric and hence does
not make any assumption on the distribution of the measurement error.
However, the computational cost is proportional to O(N3) because of the
matrix inversion. This complexity could be handled using a distributed
approach as proposed in [8].

1.3.3 Maximum Likelihood Estimation (MLE)

The idea here is to make some assumptions on the distribution of the mea-
surement error and derive the maximum likelihood estimator (MLE) of the
coordinates of nt. If the assumptions made are close enough to reality, the lo-
calization error might be reduced significantly compared to non-parametric
method such as the Least-Squares estimation presented before. Such an
MLE was derived for independent zero-mean Gaussian measurement errors
in [9].

Keeping the same notation, we have N independent noisy TOA mea-
surements :

tiprop =
ri

c
+ ǫi , i = 1, . . . , N (16)

where ǫi
iid∼ N (0, σ) and i is the index of the reference node. Then the

probability density function (pdf) of T = [t1prop, . . . , t
N
prop]

T given θ, the
coordinates of nt, is :

f(T |θ) = (2π)−
N
2 (detQ)−

1
2 exp

(

−J

2

)

(17)

where

J =

[

T − r(θ)

c

]T

Q−1
[

T − r(θ)

c

]

(18)

with Q = diag(σ2, . . . , σ2), the covariance matrix, and r(θ) = [r1, . . . , rN ]T ,
the vector of true distances. The MLE will be :

θ̂ = arg min
θ

{J} (19)

Setting the gradient of J to zero with respect to the two parameters xt

and yt yields :

∂
∂xt

J(θ) =
N
∑

i=1

(ri−tipropc)(xt−xi)

ri
= 0

∂
∂yt

J(θ) =
N
∑

i=1

(ri−tipropc)(yt−yi)

ri
= 0

(20)
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Because ri =
√

(xi − xt)2 + (yi − yt)2, those equations are non-linear in the
unknowns and require the use of some iterative optimization algorithm such
as gradient descent or Newton’s method to find the minimum of J(θ).

1.3.4 Comparison of LSE and MLE

To evaluate the performance of LSE and MLE a small simulation on Matlab
was set up. One target and N reference nodes are uniformly distributed on a
100 by 100 meters squared surface. The distance between the reference nodes
and the target is computed and some noise is added to this distance. The
LSE is implemented as presented above using all the N(N − 1)/2 equations
available. The MSE implementation uses the matlab function fminsearch

to solve the optimization problem of Eq. (19).
The performance metric used is the Mean Error (ME) distance between

the true and the calculated position. The SNR is defined in this case as
the true-distance to measurement error power ratio. Both Gaussian and
non-Gaussian measurement noise are studied. In the non-Gaussian case, a
mixture of three Gaussian with a bias for positive values is used.

The results shown in Fig. 4 were obtained with 1000 repetitions for each
point. The MLE outperforms the LSE when the noise is Gaussian. This is
expected since the MLE models the noise as Gaussian. When the noise is
not Gaussian, the MLE outperforms the LSE when the number of reference
nodes is small but their performance is asymptotically identical. When the
noise is not Gaussian, both the MLE and the LSE needs very high SNR to
give an acceptable performance.

2 Modelling of Synchronization Error in 802.15.4a

with an Energy-Detection receiver

A first step in the analysis of the performance of ranging with an energy-
detection receiver for 802.15.4a is the analysis and modelling of the synchro-
nization error which directly affects both TOA and TDOA. A good error
model has multiple use in the design and performance evaluation of ranging
algorithms. First of all, it allows to simulate the ranging without simulat-
ing the underlying physical layer that does the synchronization. Secondly
it could be used to derive the MLE according to an error model closer to
the reality. Indeed it was shown in section 1.3.4 how the performance drops
when the error does not fit the model used to derive the MLE.

12



−5 0 5 10 15 20
10

−2

10
0

10
2

10
4

100x100 m. square − 10 reference nodes

SNR [dB]

M
ea

n 
E

rr
or

 [m
]

 

 
LS − Non−Gaussian noise
ML − Non−Gaussian noise
LS − Gaussian noise
ML − Gaussian noise

(a)

0 10 20 30 40 50
10

−2

10
0

10
2

10
4

100x100 m. square − SNR 10 [dB]

Number of reference nodes

M
ea

n 
E

rr
or

 [m
]

 

 
LS − Non−Gaussian noise
ML − Non−Gaussian noise
LS − Gaussian noise
ML − Gaussian noise

(b)

Figure 4: Performance comparison of Maximum Likelihood and Least-
Squares Estimation of the position of the target node. (a) The Mean Error
(ME) as a function of the SNR of the distance measurement with 10 refer-
ence nodes. (b) The ME as a function of the number of reference nodes for
an SNR of 10 dB.

Tc L Tint Thldprob G N M

2e-9 64 2e-9 0.9999 8 16 2

Table 1: Simulation parameters used to generate the dataset.

2.1 Experiment Conditions

The measurement of the synchronization error was done using the 802.15.4a
energy-detection physical layer simulator developed by Ruben Merz and
Manuel Flury at LCA2. The error is defined as the offset between the
synchronization time and the true time of arrival. This offset is rounded to
a precision of 0.1 ns. Simulation parameters are given in 1. At the end of
the simulations, only successful synchronizations were kept. Indeed, when
synchronization fails ranging is not possible. Mainly the single user case was
considered. In a second time, simulations were also done with one interferer
with power ten times superior to the user of interest. But in this case, only
an histogram is shown. The statistical analysis is left for further work.
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Figure 5: The histogram of the synchronization offset at an SNR of 12 dB.

2.2 Single User

To begin the analysis, it is useful to look at the histogram of the distribution
of the synchronization error Fig. 5. We can see that there is roughly three
parts that seems to follow distinct distributions. The first one that we’ll call
the nose contains all the samples smaller than some bound located around
α ≈ −1.5 ns. Then there is a central part that will be called peak located
around 0 ns, the correct synchronization point. The last part called the
tail begins at about β ≈ 1.2 ns. Therefore, the samples were separated
in three groups : Snose = {x|x ∈ [−32;α[}, Speak = {x|x ∈ [α;β]} and
Stail = {x|x ∈]β; +∞[}. The values of α and β were chosen manually by
looking at the histograms. The hard limit at -32 ns comes from the back
search algorithm implemented in the simulator. Then, the final distribution
will look like :

foffset(x) =











pnosefnose(x) if x ∈ Snose

ppeakfpeak(x) if x ∈ Speak

ptailftail(x) if x ∈ Stail

(21)

where pnose = P{x ∈ Snose} is estimated as |Snose|/N and N is the total
number of samples. ppeak and ptail are defined similarly.

As the nose contains very few samples, it is difficult to characterize.
It was compared with Quantile-Quantile (QQ) plot to a reverse truncated
exponential (because of the hard limit). The QQ plot in Fig. 6 seems to show
a fairly straight line, however when looking at the histogram we see that
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Figure 6: Fit of the nose of the distribution. (a) QQ plot against uni-
form distribution (b) QQ plot against truncated exponential distribution
(c) Comparison of the shapes of the distributions.

there is only a few samples here and there. Therefore a uniform distribution
might fit the nose as well as an exponential. This is confirmed by a QQ
plot that shows little difference compared to the first one. In the end the
uniform model is chosen because it is the simplest and :

fnose(x) =
1

α + 32
. (22)

The peak as well looks difficult to handle. It is fairly flat on the top
but decays quickly at the boundaries. In the QQ plot shown in Fig. 7, it
seems to follow a truncated normal distribution, but when comparing to the
histogram we can see that a normal distribution is too thin. It is too high
at the center and too low on the sides, thus being overly optimistic. When
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Figure 7: Fit of the peak of the distribution. (a) QQ plot against uniform
distribution (b) QQ plot against truncated normal distribution (c) Compar-
ison of the shapes of the distributions.

comparing to a uniform distribution, the QQ plot looks equally good but
this time it is definitely too high at the boundaries while being too low at
the center. In this case a uniform distribution is too pessimistic. Finally the
Gaussian was chosen as it leads to a final model that is closer to a continuous
distribution function. The mean µ and variance σ2 are estimated as for a
usual normal distribution :

µ̂ =
1

|Speak|
∑

x∈Speak

x (23)

σ̂2 =
1

|Speak| − 1

∑

x∈Speak

(x − µ̂)2 (24)
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and the probability distribution function is :

fpeak(x) =
1√
2πσ̂

e−
(x−µ̂)2

2σ̂2

Φ
(

β−µ̂
σ̂

)

− Φ
(

α−µ̂
σ̂

) . (25)

where Φ(x) is the cumulative distribution function of a zero-mean unit-
variance normally distributed random variable.

Finally the tail seems to be quite heavy, therefore some heavy tail dis-
tribution seems appropriate. First a power law of the type f(x) = ax−τ

was tried. For this one we worked directly on the histogram. As log f(x) =
log a− τ log x, the histogram should be linear in log-log space. To check this
we take a histogram of the tail composed of K bins B1, . . . , BK correspond-
ing to x1, . . . , xK , remove the bins with no points inside (Bk = 0, because
we need to take the logarithm). Then, we use a least-squares fit to a straight
line on the pairs (log xk; log Bk), Bk 6= 0, to find log a and τ . However, the
result was not successful, as shown in Fig. 8.

Then, an exponential distribution was tried. Already the QQ plot shows
almost a straight line. This seems therefore a good model for the tail. The
parameter of the exponential is then calculated as :

λ̂ =
|Stail|
∑

x∈Stail

x
(26)

and the pdf is :

ftail(x) = λ̂e−λ̂(x−β) (27)

The final result is shown in Fig. 9. The boundaries between the three
parts were chosen manually to be α = −1.5 ns and β = 1.2 ns. Then
the evolution of µ̂, σ̂ and λ̂ as a function of the SNR is shown in Fig. 11.
A 2D histogram for different SNR is also shown along with the evolution
pnose, ppeak and ptail, the weights of the different parts of the distribution, in
Fig. 10. It can be observed that the length of the tail is maximum for some
intermediate value of the SNR (around dB). When the SNR is very low, it
seems there is a binary behavior, either synchronization succeeds with good
precision either it fails completely. When the SNR is high the precision also
gets better. However the tail remains very heavy, with offset up to 20 ns (6
m) with relatively high probability. At 25 dB, the probability to be in the
tail is still around 10%.
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Figure 8: Fit of the tail of the distribution. (a) Fit to a power law (log-log)
(b) QQ plot against exponential distribution (c) Comparison of the shapes
of the distributions.

2.3 With Multiple User Interference

The simulations were redone with an interferer ten times stronger than the
user of interest. No modelling has been done yet, but a 2D histogram again
along with the evolution of pnose, ppeak and ptail is shown in Fig. 13. We can
observe in Fig. 12 that there is significant weight in the nose this time due
to the back search algorithm especially at high SNR. When the SNR goes
close to zero, we fall back in a pattern similar to the single user case.
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3 Conclusion

In section 1 the state-of-the-art in localization was revised. As for the mea-
surement technique, the only appropriate method for wireless sensor net-
works without good clock synchronization is two-way TOA measurements.
However, it requires a lot of redundancy when actually taking the measures
in a network. In order to mitigate this there is two possible orientation :

• Try to use the properties of UWB communication to find an efficient
scheme.

• Use a scheme based on differential TDOA (dTDOA) as described in
[4] could also be studied as it doesn’t require clock synchronization
and also mitigate the error due to clock drifts.

It was also shown that neither Least-Squares nor Gaussian based Maxi-
mum Likelihood estimation give a performance sufficient for acceptable pre-
cision when the measurement noise is not Gaussian. There is therefore a
need for better algorithm on the one hand and to reduce to the minimum
the measurement error on the other hand.

In section section 2, the synchronization error was analyzed and indeed
found to be highly non-Gaussian. It is heavy-tailed with a tail that doesn’t
shrink so much as the SNR becomes higher. The central part of the dis-
tribution could not be fit very well and will require some more effort to be
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Figure 10: The length of the tail is maximum at about 5 dB. At this SNR,
the probability to be in the tail is about 0.6. However, the probability to be
in the nose is almost zero. (a) Evolution of pnose, ppeak and ptail with the
SNR (b) The histograms of the synchronization offset as a function of the
SNR.

realistic. Also, the distribution found needs more validation. To begin with,
the model could be used to generate samples that would be compared to the
output of the simulator. Secondly, a goodness of fit, or some other statistical
tests could be performed to assess the model.

Also, it should be noted that the simulation environment was not opti-
mized at all for ranging. There is therefore plenty of room for optimization.
For example, a pre-defined payload could be used to enhance the synchro-
nization.

3.1 Future work

• The synchronization error should be analyzed more in details for the
Multiple User Interference case.

• An efficient distributed measurement algorithm should be investigated,
taking into accounts the properties of UWB.

• There is the possibilities to derive a better Maximum Likelihood Es-
timator based on the findings of 2.

• Another possibility is to optimize the synchronization algorithm to
reduce the error.
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Figure 11: The evolution of the parameters of the fit as a function of the
SNR. (a) Mean of truncated normal (b) Standard deviation of truncated
normal (c) Parameter of the exponential tail.

• Then, a distributed version of the localization algorithm should be
developed.

• Finally the complete distributed localization algorithm should be sim-
ulated to determine its performance in realistic conditions.
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A Network-wide Localization Algorithms

We considered in section 1 a case where we know perfectly the coordinates of
a set of reference nodes and we want to localize some target node. However,
in a practical sensor network there is no such reference nodes. Even if some
nodes are relatively static and can get a good estimate of their position,
there will still be some error in those estimates. A GPS receiver is too
costly and manual configuration too cumbersome for practical, large, sensor
notworks. In addition, there might also be no static nodes at all. Therefore,
the positions of all nodes in the network must be estimated together.

A.1 Mass-spring Optimization

The standard solution to this problem is solving a global mass-spring op-
timization problem. This is a reference to the physical problem of finding
the equilibrium, or minimum-energy configuration, of a system composed
of masses connected together by springs. Here the masses and the springs
corresponds respectively to the nodes and the distances between the nodes.
First, the nodes are initialized to some positions, then the positions of the
nodes are changed by small steps until a minimum energy configuration is
reached. This corresponds to the minimization of a global error function
given by :

E =
∑

i

(ri − r̂i)
2 (28)

where i is an index covering all the edges in the graph of the network, ri is
the true length of the edge and r̂i is its estimate.

There are however some problems to this approach. First, the risk of
convergence to local minimum is high. In addition to this, it might happen
that the true graph is also itself a local minima of the error function. This
is mostly due to ambiguities in the graph due to a low connectivity of the
nodes. To solve this problem, [10] proposes an initialization algorithm which
leads to good solutions of the problem. It sets the nodes the furthest apart
at the edge of the graph and use them as reference for the rest of the nodes
in an attempt to have an initialization close to the true graph. On the other
hand, [11] separates the network into sub-graphs where the node degree is
at least three. Then the sub-graphs are rigid and there are no ambiguities
in the nodes positions. It also excludes isolated nodes.
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