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Abstract

Based on the results of a previous semester project, an accurate probabilistic
model of the synchronization offset of an Impulse-Radio Ultra-Wide Band
(IR-UWB) energy receiver is developped. This model is optimized for dif-
ferent Signal-to-Noise Ratio (SNR) points using data sets obtained using
the UWB receiver simulator developped at the LCA2. Then, Single Sided
Two-Way Ranging as well as Double Sided Two-Way Ranging transactions
are studied in detail incoporating both the drift of the nodes clock and the
synchronization offset model. A link budget is computed for the system and
the transmit power is computed according to the regulations of the FCC.
Based on the synchronization offset model and this link budget, a localiza-
tion simulator is built and the performance of different algorithms based on
Maximum Likelihood Estimation is evaluated.
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1 Synchronization Error Modelling

1.1 Review of semester project

As this summer internship is the continuation of a semester project [1], the
results obtained during the semester project will first be summarized. Dur-
ing the semester project, the simulator of an energy-detection UWB receiver
developed at the LCA2 was used to generate samples of the synchronization
offset. The synchronization offset is defined as the difference between the
time of arrival of the first path and the time at which the beginning of the
training sequence is detected.

A statistical analysis of the collected data was done in order to find a
model for the probability distribution of the synchronization offset. It was
noticed that the empirical distribution of the offset presented three distinct
parts with different behavior. A central peak located approximately between
α ≈ −1.5 and β ≈ 1.2 nanoseconds with the two other parts located on its
left and right respectively called nose and tail. The tail is limited to the left
by the depth of the backsearch algorithm τbs = 32 ns. During the analysis,
the data set was split into three sets corresponding to those three parts and
each set was analysed separately. The goal being to come up with a model
of the form :

foffset(x) =







pnosefnose(x) if −τbs ≤ x < α
ppeakfpeak(x) if α ≤ x ≤ β
ptailftail(x) if x > β

0 if x < −τbs

(1)

where fnose(x), fpeak(x) and ftail(x) are the individual probability distribu-
tion functions (pdf) over the different sets while pnose, ppeak and ptail are
the probabilities that a sample belongs to respectively the nose, peak or tail
of the distribution.

Through the analysis it was determined that the tail can be accurately
modelled with an exponential distribution. On the other hand, the nose
contained so few samples that it was enough to model it with a uniform dis-
tribution. A truncated Gaussian model was used for the peak, but didn’t fit
it very well. The parameters of those different distributions were computed
using traditionnal maximum likelihood estimators of the parameters on the
considered datasets (either nose, peak or tail). Finally the pnose, ppeak and
ptail were computed. Both the parameters and the probabilities to belong to
nose, peak or tail were computed for different values of the signal-to-noise
ration (SNR). Fig. 1 shows the empirical distribution along with the pdf
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Figure 1: The model developped during the semester project. This is for an
SNR of 12 dB. It can be observed that the central peak is too narrow.

model. It can be observed that for the central peak, the model is not ac-
curate at all. Fig. 2 shows the evolution of pnose, ppeak and ptail with the
SNR.

1.2 Mixture Model

The previous error model developped during the semester project showed
some serious limitations. In addition to being cumbersome, it lacks con-
tinuity and the center of distribution was too loosely modelled while it is
a crucial point of the distribution (up to 90% of the samples at high SNR
falls at the center). For those reasons, a better model was developped. The
underlying characteristics of the system were taken into account to produce
a model that fits the data very tightly.

These underlying characteristics are :

• The channel

• The synchronization algorithm

• The sampling frequency

3



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Probability of nose, peak, tail

SNR [dB]

P
ro

ba
bi

lit
y

 

 

P
nose

P
peak

P
tail

Figure 2: The evolution of pnose, ppeak and ptail with the SNR.

• The backsearch algorithm1

The model is then constructed in three steps. Firstly, the offset between
the time of arrival of the first path and the first observable path is modelled
as a random variable (r.v.) T . The exponential behavior of the tail that
was observed previously can be attributed to the channel model used in the
simulator which use an exponential decay for the power of the different paths.
The central peak of the distribution is due partly to the synchronization
algorithm and the backsearch algorithm which improve the observability of
the first path. Finally, the backsearch fails sometimes and synchronization
happens before the true time of arrival (i.e. the offset is negative). In this
case, the error due to the backsearch is located between −τbs and 0 ns, where
τbs = 32 ns in our case is the depth of the backsearch. Therefore a mixture
distribution with an exponential component accounting for the channel, a
centered Gaussian component for the path that are correctly detected and
a uniform component for the premature synchronization is chosen as the

1The backsearch algorithm was introduced to cope with situations whereby the first
path is not the strongest path. It operates by going back from the detected path and try
to detect some weaker paths that were missed. The search region goes from 0 to −τbs ns.
In our case, τbs = 32 ns was chosen.
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probability density function (pdf) of T :

fT (t) = w1fg(t) + w2fe(t) + w3fu(t) (2)

where fg(t) and fe(t) are the pdf of respectively a centered Gaussian r.v.
with variance σ2 and an exponential r.v. with decay parameter λ :

fg(t) =
1√
2πσ

e−
t2

2σ2 fe(t) =

{

λe−λt if t ≥ 0

0 if t < 0
.

fu(x) =

{
1

τbs
if x ∈ [−τbs; 0]

0 o.w.

The second step is to add the effect of the sampling. The sampling is
modelled as an additive r.v. S ∼ U [−ρ/2; ρ/2] where ρ is the sampling
period. The error becomes now :

E = T + S

and the pdf of S is :

fS(s) =

{
1
ρ

if −ρ
2 ≤ s ≤

ρ
2

0 o.w.
, (3)

The pdf of the sum of two r.v. is given by the convolution of their respective
pdf.

fE(x) = fT (x) ∗ fS(x)

Let’s first compute the convolution of a given pdf f(t) with the pdf of a r.v.
uniformely distributed in [a; b], fU (t) :

f(t) ∗ fU (t) =

∞∫

−∞

f(x)fU(t− x)dx =
1

b− a

t−a∫

t−b

f(x)dx

=
1

b− a





t−a∫

−∞

f(x)dx−
t−b∫

−∞

f(x)dx





=
1

b− a [F (t− a)− F (t− b)]

where F (t) is the cumulative distribution function (cdf) corresponding to
the pdf f(t). Using the linarity of the convolution, we can apply this result
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separately on the components of the mixture. However, since the support of
fS(t) is much shorter than the support of fu(t), when convolved together,
the result is essentially similar to fu(t) with small border effects that can be
neglected in the model. Therefore, we use the approximation :

fS(x) ∗ fu(x) ≈ fu(x).

Hence, the pdf of E can be written :

fE(x) = w1

[
Fg

(
x+ ρ

2

)
− Fg

(
x− ρ

2

)]

ρ
+w2

[
Fe

(
x+ ρ

2

)
− Fe

(
x− ρ

2

)]

ρ
+w3fu(x)

where Fg(x) and Fe(x) are the cdf of respectively the Gaussian and Expo-
nential distributions. In the system considered, the sampling period is ρ = 2
ns. So our error model has the following pdf :

fE(x) = w1
[Fg (x+ 1)− Fg (x− 1)]

2
+w2

[Fe (x+ 1)− Fe (x− 1)]

2
+w3fu(x)

where :

Fg(x) =
1√
2πσ

x∫

−∞

e−
t2

2σ2 dt Fe(x) =

{

1− e−λt if x ≥ 0

0 if x < 0

and since fE(x) is a pdf we have the following counstraint :

w1 + w2 + w3 = 1

During the optimization of the parameters it was noticed that the distri-
bution is not always centered. Therefore, non-centrality parameters where
added to the Gaussian and exponential components :

fE(x) = w1
[Fg (x− µ1 + 1)− Fg (x− µ1 − 1)]

2

+w2
[Fe (x− µ2 + 1)− Fe (x− µ2 − 1)]

2
+w3fu(t)

The cdf of E can also be derived and we find :

FE(x) = P {E ≤ x}
=

w1

2
[(x− µ1 + 1)Fg(x− µ1 + 1)− (x− µ1 − 1)Fg(x− µ1 − 1)

+ σ2 (fg(x− µ1 + 1)− fg(x− µ1 − 1))
]

+
w2

2
[g(x− µ2 + 1)− g(x− µ2 − 1)]

+w3Fu(x)
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where :

g(x) =

x∫

−∞

Fe(t)dt =







x+ 1
λ

(

e−λx − 1
)

if x ≥ 0

0 o.w.

and Fu(x) is the cdf of fu(x) :

Fu(x) =







0 if x < −τbs
x+τbs

τbs
if −τbs ≤ x ≤ 0

1 if x > 0

1.3 Optimization of the Model

Once the model derived in the previous section was obtained, the next logical
step was to optimize the parameters to fit the data. The model has seven
parameters, out of which six are independent :

• w1, w2 and w3, the weights of the mixture with constraint :

w1 + w2 + w3 = 1

• µ1 and µ2, the non-centrality parameters of respectively the Normal
and exponential components of the mixture

• σ, the standard deviation of the Normal component

• λ, the decay parameter of the exponential component

When it comes to optimize mixture models, the standard solution is
the EM algorithm. It solves elegantly the constrained optimization of the
weights. However, for our model there is no closed form of the Maximization
step for µ1, µ2, σ and λ. Then, instead of the EM step, we do one step in
the direction of the gradient of the log-likelihood function :

l(θ, x̄) =
N∑

n=1

log fE|Θ(xn|θ) , θ = {w1, w2, w3, µ1, µ2, σ, λ}

where x̄ = [x1, . . . , xN ] is the dataset. The iterative optimization procedure
is completely described in Algo. 1. ν is the gradient ascent step size. The
derivation of the gradient of l(θ, x̄) is given in Appendix B. The initial
conditions for w1, w2 and w3 are the probabilities to belong to respectively
the peak, tail and nose, as found in Section 1.1. The initial condition of λ is
set to the parameter for the distribution of the tail also found in Section 1.1.
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Algorithm 1 Model parameter optimization

Require: x̄, θ(0) = {w(0)
1 , w

(0)
2 , w

(0)
3 , µ

(0)
1 , µ

(0)
2 , σ(0), λ(0)}

Ensure: Optimal θ
/* Initialization */
θ ← θ(0)

repeat

/* EM step */
for n = 1, . . . , N do

/* Posterior probability */

ŵ1,n =
w1[Fg(xn−µ1+1,σ)−Fg(xn−µ1−1,σ)]

2fE(xn,θ)

ŵ2,n = w2[Fe(xn−µ2+1,λ)−Fe(xn−µ2−1,λ)]
2fE(xn,θ)

ŵ3,n = w3fu(xn)
fE(xn,θ)

end for

for i = 1, 2, 3 do

/* Weight update */

wi = 1
N

N∑

j=1
ŵi,j

end for

/* Gradient ascent step */
µ← µ+ ν ∂

∂µ
l(θ, x̄)

σ ← σ + ν ∂
∂σ
l(θ, x̄)

λ← λ+ ν ∂
∂λ
l(θ, x̄)

until convergence reached
return θ

8



0 10 20
0

0.5

1

SNR [dB]

w
ei

gh
ts

Mixture weights

 

 

0 10 20
−1

0

1

SNR [dB]

σ

Gaussian Standard deviation

0 10 20
0.1

0.15

0.2

SNR [dB]

λ

Exponential parameter

0 10 20
−0.4

−0.2

0

0.2

SNR [dB]

µ

Non−centrality parameter

 

 

w
1

w
2

w
3

Figure 3: The optimal parameters of the model for single user communica-
tion.

µ1 and µ2 were set to zero and it was found experimentally that 0.1 is a
good inital value for σ.

The optimization procedure was run for SNR points 0 to 25 dB for
which data was collected through simulations as described in Section 1.1.
However, the values found for σ were not stable but oscillated around some
average value. Therefore we set σ = 0.115, its approximate average value.
On the other hand it was observed that µ1 and µ2 are not independent
parameters and they were thus reduced to a single parameter µ = µ1 = µ2.
Then the optimization algorithm was run again to get the new values of the
parameters.

The result is shown in Fig. 3 for single user communication and in Fig. 4
when there is an interferer with 10 times superior transmit power. The
numerical values of the optimized parameters can be found in Appendix C.
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Figure 4: The optimal parameters of the model for one user and one inter-
ferer with 10 times transmit power.

The final model we obtain is :

fE(x) = w1
[Fg (x− µ+ 1)− Fg (x− µ− 1)]

2

+w2
[Fe (x− µ+ 1)− Fe (x− µ− 1)]

2
+w3fu(t)

The optimized model is plotted along the empirical pdf for some SNR points
in Fig. 5, Fig. 6 and Fig. 7. In Fig. 8 we can see QQ-plots of the empirical
data against samples generated according to the model. It can be seen that
for middle to high SNR, the model fits very tightly the data. However when
the SNR is low, the central peak tends to be narrower than the model. This
is probably due to the fact that when the noise level is high, the sampling
error becomes critical, i.e. when the sampling error is too high, the syn-
chronization algorithm fails. The model could be corrected by letting the
sampling error width variable. However, the gain might not be worth the
extra complexity introduced in the model.
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2 Simulation of localization scenarios

2.1 Realistic Two-Way Ranging transactions

The classical technique to make Time of Arrival (ToA) measurement without
synchronization of the nodes’ clock is to use Two-Way Ranging (TWR)
transactions. In this case, the measurement is made on the round-trip time
of a packet, taking into account some turnaround and processing time at the
second node. These measurements are then used to estimate the propagation
time tp between the two nodes. The effect of clock drifts on TWR was
studied in a another previous semester project [2]. Two flavours of TWR
were analyzed, Single Sided TWR (SS-TWR) and Double Sided TWR (DS-
TWR). In order to get an idea of the measurement error, we added in
addition the error due to the synchronization offset.

Before describing in details the two techniques a quick glossary of the
variables used is given :

Node A : node making the measurement

Node B : node with which the measurement is done

tp : the propagation time

t̂
(ss)
p : The SS-TWR estimate of the propagation time

t̂
(ds)
p : The DS-TWR estimate of the propagation time

trd : the round-trip time measurement

r : the total time spent at node B before the reply is transmitted including
the turnaround time of the transciever trxtx, the processing time tproc

and the preamble length L.

ǫA : clock drift of node A

ǫB : clock drift of node B

trxtx : turnaround time of the UWB transceiver

tproc : processing time

L : preamble duration

T : random offset between the first path and first observable path as de-
scribed in the synchronization error model in Section 1.2 with distri-
bution given in Eq. (2).
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S : random sampling offset with pdf given in Eq. (3).

SS-TWR As illustrated in Fig. 9, only A measures the round-trip time.
We have :

tArd = (1 + ǫA)

[

2tp +
r

1 + ǫB
+ TB + SB + TA + SA

]

and the propagation time is estimated as :

t̂(ss)p =
tArd − r

2
= (1 + ǫA)tp

︸ ︷︷ ︸

A

+
r

2

[
1 + ǫA
1 + ǫB

− 1

]

︸ ︷︷ ︸

B

+
1 + ǫA

2
(TB + SB + TA + SA)

︸ ︷︷ ︸

C

Now to get a simpler model, we remove the errors which are not significant
(i.e. ≪ tp). Note that tp, TB, TA, SB and SA are in the order of nanoseconds
(10−9), while ǫA and ǫB are in the tens of microseconds (10−5) and r in the
hundreds of microseconds (10−4). Therfore, the terms in ǫA in A and C can
be neglected. On the other hand, B needs some attention. Let’s first use
the Taylor expansion of the middle terme :

1 + ǫA
1 + ǫB

− 1 = (1 + ǫA)(1− ǫB +O(ǫ2B))− 1 = ǫA − ǫB +O(10−10)

and B becomes :

r

2

[
1 + ǫA
1 + ǫB

− 1

]

=
r

2
(ǫA − ǫB) +O(10−14)

where the terms in O(10−14) can be neglected since it is 5 orders of magni-
tude smaller than tp.

We can now write the error model for SS-TWR :

E(ss) = 2(t̂p − tp) = TA + TB + SA + SB + r(ǫA − ǫB) (4)

DS-TWR In DS-TWR, the round-trip time is measured by both node
A and B, and the results are combined to estimate the propagation time.
The measuring method is illustrated in Fig. 10. As it will be shown, this
technique allows to elegantly remove the effect of the clock drifts at the cost
of some communication overhead.

We have two SS-TWR measurements :

tArd = (1 + ǫA)

[

2tp +
r

1 + ǫB
+ T

(1)
B + S

(1)
B + TA + SA

]

12



and

tBrd = (1 + ǫB)

[

2tp +
r

1 + ǫA
+ TA + SA + T

(2)
B + S

(2)
B

]

The propagation time estimate is now taken as :

t̂(ds)
p =

tArd + tBrd − 2r

4

which can be expanded into :

t̂(ds)
p =

(

1 +
ǫA + ǫB

2

)

tp
︸ ︷︷ ︸

A

+
r

4

[
1 + ǫa
1 + ǫb

+
1 + ǫb
1 + ǫa

− 2

]

︸ ︷︷ ︸

B

+
[

(1 + ǫA)
(

T
(1)
B + S

(1)
B + TA + SA

)

+ (1 + ǫB)
(

TA + SA + T
(2)
B + S

(2)
B

)]

︸ ︷︷ ︸

C

As for SS-TWR, the terms in ǫA and ǫB in A and C can be neglected. And
using taylor expansions in B yields :

B =
r

4

[
1 + ǫa
1 + ǫb

+
1 + ǫb
1 + ǫa

− 2

]

=
r

4
((1 + ǫA)(1− ǫB +O(ǫ2B)) + (1 + ǫB)(1− ǫA +O(ǫ2A))− 2)

=
r

4
(−2ǫAǫB +O(ǫ2A) +O(ǫ2B))

= O(10−14)

which is much smaller than tp and can thus be neglected.
The remaining error is completely determined by the synchronization

and can be written :

E(ds) = 4
(

t̂(ds)
p − tp

)

= 2TA + 2SA + T
(1)
B + S

(1)
B + T

(2)
B + S

(2)
B

2.2 Maximum Likelihood Localization

In maximum likelihood localization, we try to estimate the coordinate θ =
[x, y] using N TWR measurement :

t̂p =
[

t̂(1)p , . . . , t̂(N)
p

]

between the target and N reference nodes with coordinates [xi, yi], i =
1, . . . , N . The propagation time between the ith reference node and the
target can be expressed as a function of the coordinates of the target node :

t(i)p (x, y) =

√

(x− xi)2 + (y − yi)2

c
; i = 1, . . . , N
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where c = 3 × 108 m/s is the speed of light, and the TWR measurement
errors can be expressed as :

E
(twr)
i = k

(

t̂(i)p − t(i)p (x, y)
)

; i = 1, . . . , N

where k = 2 for SS-TWR and k = 4 for DS-TWR.
Now, the negative log-likelihood function of the coordinates θ of the

target is :

l(θ, t̂p) = −
N∑

i=1

log f
E

(twr)
i

(

k
(

t̂(i)p − t(i)p (x, y)
))

and the Maximum Likelihood Estimator (MLE) of θ is :

θ̂ = arg min
θ∈R2

l(θ, t̂p)

Depending on the probabilistic model we use for the measurement error
E(twr), different error functions can be obtained.

Quadratic Error function The quadratic error function is obtained by
assuming the measurement errors to be independent and identically dis-
tributed (iid) Normal random variables. Then, the MLE is obtained by
minimizing :

l(θ, t̂p) =
N∑

i=1

(

t̂(i)p − t(i)p (x, y)
)2

Although this model is far from representing the reality, it is widely used
in the literature (for example in [3, 4]) and is used here as a benchmark to
compare to the performance of the estimator developped using the model
derived in Section 1.2.

Double-sided Exponential Error function According to the model of
Section 1.2, the measurement error has an exponential tail behavior. If we
reduce this model to a double-sided exponential and consider all the errors
to be iid with pdf :

f(t) = λe−λ|t|

then the MLE can be found by minimizing the sum of the absolute value of
the measurement errors :

l(θ, t̂p) =
N∑

i=1

∣
∣
∣t̂(i)p − t(i)p (x, y)

∣
∣
∣
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SS-TWR Error function The two previous error functions presented
don’t consider the clock drifts at all. As the error due to the drift is very
significative this leads to poor performance. To try to enhance this, a new
error functions based on the error of SS-TWR shown in Section 2.1, Eq. (4).
Since the drift ǫt of the target node is common to all the measurements, it
is considered as a parameter. The drifts of the reference nodes are assumed
uniform iid random variables :

ǫi
iid∼ U [−α/2;α/2] ; i = 1, . . . , N

and we have now the following error model :

Ei = 2
(

t̂(i)p − t(i)p (x, y)
)

− rǫt
= T

(t)
i + Ti + S

(t)
i + Si − rǫi i = 1, . . . , N

≈ T
(t)
t + Ti − rǫi

where T
(t)
i and Ti are the synchronization errors at respectively the target

and the ith reference node, S
(t)
i and Si are similarly the sampling errors in

the synchronization. The approximation is made because the support of S
(t)
i

and Si is much smaller than the support of rǫi. Note that the Ei are iid.
Their pdf fEi

(t) was computed and is given in Appendix A. Using this pdf
we find the MLE by minimizing :

l(θ, ǫt, t̂p) = −
N∑

i=1

log fEi

(

2
(

t̂(i)p − t(i)p (x, y)
)

− rǫt
)

If the drifts can somehow be approximed, then the following measure-

ment error model can be used and the sampling errors S
(t)
i and Si are re-

placed by a single uniform random variable Ui :

Ei = t̂(i)p − t(i)p (x, y) + r(ǫi − ǫt) = T
(t)
i + Ti + Ui ; i = 1, . . . , N

and the derivation for the pdf are the same as in Appendix A with different
bounds for the uniform random variable.

2.3 Link Budget

In order to draw samples of the synchronization error, we need to establish
a link budget to compute the signal-to-noise (SNR) ratio per link. The SNR
is given by :

SNR =
Prx

N0B

15



where Prx is the received power, N0 the thermal noise power per Herz and
B the bandwidth of the signal. In order to get the SNR as a function of the
transmit power Ptx, we choose the free space propagation model. In free
space environnement, the relation between Prx and the transmit power Ptx

is given by the Friis formula [5] :

Prx

Ptx
= GtxGrx

(
λ

4πR

)2

where Gtx and Grx are respectively the gains of the transmit and receive
antennas, λ is the wavelength and R the distance between transmitter and
receiver. The thermal noise power per Herz is only function of the environ-
nement and is given by :

N0 = kBT

where kB is Boltzmann’s constant and T the temperature in Kelvin degrees.
Then the SNR can be rewritten as :

SNR =
λ2GtxGrxPtxR

−α

(4π)2kBTB

where α is a path loss exponent. The path loss exponent was introduced
to account for other environnements than free space. If we set α = 2, then
we are considering the free space propagation, but for example for indoor
environnements the path loss exponent is closer to α = 4.

Therefore the SNR is a direct function of the transmit power Ptx. How-
ever, the transmit power level is severly restricted by rules and regulations
edicted by national organisms like the FCC in the USA or the OFCOM in
Switzerland. To set Ptx we refer to the FCC regulations described in [6].
The limitations on Ptx are :

• The average transmit power must be less -41.3 dBm / MHz.

• The peak signal strength over a 50 MHz bandwidth is limited to 20
dB with respect to the maximum permitted average emission level2.

2A second rule precise that the peak power over the entire bandwidth is variable based
on the amount by which the -10 dB exceeds 50 MHz according to the following formula :

20 + 20 log10(-10 dB bandwidth of the emission in Hz/50 MHz)

with the further stipulation that the absolute peak emission level not be permitted to
exceed the average limit by more than 60 dB.
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The UWB system we are considering is bandlimited between 4.15 GHz
and 4.65 GHz and has hence a bandwidth of B = 500 MHz with a center
frequency fc = 4.4 GHz. The preamble for synchronization in 802.15.4a is
composed of Lp = 31 symbols from a ternary code with symbols {-1, 0, 1}
out of which 16 are 0. This means there is Np = 15 pulses in the preamble.
The duration of one symbol is Ts = 128 ns while each pulse has a duration
of Tp = 2 ns. Firstly, we compute the average power per MHz :

P1MHz = 10
−41.3

10 ≈ 8× 10−5 mW/MHz

Then, the total power that can be transmitted is :

Ptot = P1MHz ×B

We can now compute the power for a single pulse :

Pp =
Lp

Np
× Ptot × Ts

Tp
≈ 5mW/pulse ≈ 7 dBm

Now we need to check the peak power according to the second rule :

P50MHz =
Pp

B/50
= 0.5mW/50 MHz = −3 dBm/50 MHz

Since :

10 log10

(
P50MHz

Ptot

)

≈ 11 dB < 20 dB

the second regulation is respected and we set :

Ptx = 5mW ≈ 7 dBm

2.4 Simulation Results

Finally, simulations were used in order to evaluate the performance of the
different maximum likelihood algorithms presented in Section 2.2. Before
giving the performance results, the simulator will be briefly presented.

The scenario considered is the following. N + 1 nodes are uniformely
distributed on a plane square of surface L2. N nodes ni, i = 1, . . . , N , are
chosen as reference nodes, i.e. their coordinates are known, and one node nt

is the target node, i.e. the goal is to estimate the coordinates of nt based on
distance measurements between the reference nodes and the target node. It
is assumed that no special synchronization protocol is used. The simulation
goes as follows :
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1. The coordinates θi = [xi, yi]
T , i = 1, . . . , N of the reference nodes and

the coordinates θ0 = [x0, y0]
T of the target nodes are drawn uniformely

in the squared surface.

θi
i.i.d.∼ U [0;S]2 ; i = 0, . . . , N

2. The distances between the reference nodes and the target are com-
puted :

di = ‖θi − θ0‖2 ; i = 1, . . . , N

3. The SNR is computed for every link based on the link budget of Sec-
tion 2.3 :

ψi =
λ2GtxGrxPtxd

−α
i

(4π)2kBTB

where :

• The gains of the antennas is chosen to be Gtx = Grx = 2 dB,
according to the litterature [7, 8, 9].

• The bandwidth B of our system is 500 MHz.

• The wavelength λ is chosen with respect to the center frequency
of the system fc = 4.4 GHz.

λ =
c

fc
≈ 0.0682 m

• kB ≈ 1.38 × 10−38 J/K is Boltzmann constant.

• The temperature is chosen to be T = 298.15 K (25 oC).

• The propagation exponent is set to α = 4 to model indoor envi-
ronnement.

• The transmit power is chosen to be Ptx = 5mW according to the
link budget of Section 2.3.

However, we need to restrict those values to {0, . . . , 25} in dB since
we only optimized the model parameters for those SNR points.

Ψi = max {0 ; min {[10 log10(ψi)] ; 25}}

4. The drifts ǫi, i = 0, . . . , N of the nodes (where ǫ0 corresponds to
the target node) are drawn independently from a zero-mean uniform
distribution with width α.

ǫi
i.i.d.∼ U

[

−α
2

;
α

2

]

; i = 0, . . . , N
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5. The propagation time estimate t̂
(i)
p corresponding to di is calculated

using the models described in Section 2.1. The processing time at the
node is limited to the turnaround time, which is set to trxtx = 400 µs,
value which can be found in [10]. In the calculations we use the exact

propagation time t
(i)
p = di

c
, where c is the speed of light. Three cases

are explored :

• SS-TWR with both drifts and synchronization errors.

• DS-TWR with both drifts and synchronization errors.

• SS-TWR when the drifts are zero.

Moreover, two values for the range drift were simulated :

• α = 40 ppm

• α = 80 ppm

6. Then, θ0 is estimated based on
{

t̂
(i)
p

}N

i=1
and {θi}Ni=1 by minimizing

one of the error functions described in Section 2.2.

θ̂0 = arg min
θ0∈R

l
(

θ, t̂p

)

The error function is optimized using the Matlab function fminsearch.
The initial value of θ0 is calculated using a direct estimation method
described in [4].

7. Finally the squared distance between the estimated position and the
true position of the target is recorded :

e =
∥
∥
∥θ0 − θ̂0

∥
∥
∥

2

2

The performance metric is then defined as :

E =

√
√
√
√

1

N

K−1∑

k=0

ei

where k is the simulation index and the total number of runs is K = 10000.
The simulations were repeated with different number of reference nodes.
We expect the localization error to reach a minimum when the number of
reference nodes is large, i.e. adding more reference nodes brings no increase
in performance. However, the best algorithm should not only reach the
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smallest error possible, but should also converge to this value quite fast
because in a practical system there might not be a large number of reference
nodes available.

The results of the simulations are shown in Fig. 11 for SS-TWR and
in Fig. 12 for DS-TWR. Finally Fig. 13 shows the performance of the al-
gorithm when there is no drift, only synchronization errors. For SS-TWR
without drifts, the uniform variables modelling the drift is replaced by an-
other uniform variable that accounts for all the sampling errors and others.
Its support is empirically set to : [−1.5; 1.5] ns.

Overall, we can see that the use of an accurate error model in the max-
imum likelihood localization brings an increase in performance compared
to methods with less complexity like the quadratic or Laplacian approxima-
tion. The exception is for SS-TWR when there is no drift. Then even if they
have the same asymptotical performance, the Laplacian error function has
a better performance than the SS-TWR error function when the number of
reference nodes is low. In the case of DS-TWR, even though the SS-TWR
error function doesn’t describe accurately the error its performance is still
the best one. Thus we can reasonnably presume that an accurate model
would give even better performance.

However, the overall performance is rather poor. Even with a large
number of nodes, the performance doesn’t go far below half a meter for any
of the considered scenario.

3 Conclusion and Future Work

A very accurate probabilistic model of the synchronization offset was devel-
opped based on the statistical analysis of simulation results. Its parameters
were optimized to fit the data set of the simulation results. Then, SS-TWR
and DS-TWR were reviewed taking into accounts both the drifts of the
nodes clock and the synchronization offset model. Simplified error models
for SS-TWR and DS-TWR were derived and in the case of SS-TWR its
probability density function was derived as well.

To perform the localization itself, the performance of the maximum
likelihood estimation with three different error functions was analyzed. A
quadratic error function, a distance (Laplacian) error function and an error
function based on the SS-TWR error model. In order to do the performance
evaluation, a detailed link budget was established based on the system char-
acteristics as well as the official rules and regulations governing the use of
UWB. Based on this link budget and the optimized synchronization offset
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model, a localization simulator was created to test the different algorithms.
This simulator can be reused in the future to test new algorithms.

The considered scenario was composed of a number of reference nodes
with known coordinates trying to localize a node with unknown coordinates
using only imprecise distance measurements. The results showed that :

1. The use of an accurate error model for the maximum likelihood brings
non-negligible increase in performance over simpler model at the cost
of a more difficult optimization problem.

2. However, the nature itself of the drifts makes the localization an ill-
posed problem and even an accurate model cannot compensate for this.
Thus, something must be done about the drifts before performing the
localization.

3. When there is no drift of the clocks, simpler algorithms like the dis-
tance error function based maximum likelihood can achieve a better
performance than the accurate SS-TWR error function at low SNR
while being asymptotically equal. This could come from the better
properties of the distance error function (convex).

4. Even so, the number of reference nodes required to achieve an ac-
ceptable performance is too high. Using a synchronization protocol
dedicated to ranging could alleviate this problem.

Therefore, before doing any future work, it might be useful to define a
precise framework with regard to a concrete problem. This could allow to
use some custom solutions depending on the problem considered. In addition
to this the following work could be done :

• Try to use the synchronization protocol dedicated to ranging that is
defined in the 802.15.4a standard.

• Replace the accurate probability density function in the maximum
likelihood error model by an approximation with better optimization
properties. Good candidates for this could be the distance error func-
tion or a mixture of Gaussian.

• Study more in depth the optimization problem. It might turn out that
an equivalent problem can be solved with better performance.

• Study more precisely the behavior of DS-TWR.

• Investigate the use of drift correction.
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A SS-TWR measurement error approximate pdf

As explained in Section 2.2, the SS-TWR measurement error can be approx-
imed as :

E = T1 + T2 + U

where T1 and T2 are two independent variables drawn from the mixture
distribution with pdf :

fT (t) = w1fg(t) + w2fe(t) + w3fu(t) (5)

with :

fg(t) =
1√
2πσ

e−
t2

2σ2 fe(t) =

{

λe−λt if t ≥ 0

0 if t < 0
.

fu(x) =

{
1

τbs
if x ∈ [−τbs; 0]

0 o.w.

and U ∼ U [a; b] and is independent from T1 and T2. Since we have a sum of
random variables, the result is given by the convolution of the pdf :

fE(x) = fT (x) ∗ fT (x) ∗ fU (x) =
1

b− a

x−a∫

x−b

(fT (t) ∗ fT (t)) dt

The details of the computations is not given here, but the resulting pdf
is also a mixture model with six components.

c1(x) =
1

b− a (Fg(x− a)− Fg(x− b))

c2(x) =
1

b− a
[

(1 + max{x− a; 0}) e−λ max{x−a;0}

− (1 + max{x− b; 0}) e−λ max{x−b;0}
]
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c3(x) =







1
b−a

1
τ2
bs

[
1
2

(
(x− a)2 −max{x− b,−2τbs}2

)

+ 2τbs (x− a−max{x− b;−2τbs})] if a− 2τbs ≤ x ≤ a− τbs
1

b−a

(

1− 1
τ2
bs

[
1
2

(
max{x− b;−2τbs}2 + min{x− a; 0}2

)

+ 2τbs (τbs + max{x− b;−2τbs})
])

if a− τbs ≤ x ≤ b− τbs
1

b−a
1

τ2
bs

1
2

(
(x− b)2 −min{x− a; 0}2

)
if b− τbs ≤ x ≤ b

0 o.w.

c4(x) =
1

b− a
[

e−λ(x−σ2λ−b)Fg(x− σ2 − b)− e−λ(x−σ2λ−a)Fg(x− σ2 − a)
]

+
1

b− ae
σ2λ2

2 (Fg(x− a)− Fg(x− b))

c5(x) =
1

τbs

1

b− a [(x+ τbs)Fg(x+ τbs − a)− (x+ τbs − b)Fg(x+ τbs − b)

− σ2 (fg(x+ τbs − b)− fg(x+ τbs − a))
]

− 1

τbs

1

b− a [(x− a)Fg(x− a)− (x− b)Fg(x− b)

− σ2 (fg(x− b)− fg(x− a))
]

c6(x) =
1

τbs

1

b− a (max{x+ τbs − a; 0} −max{x+ τbs − b; 0})

+
1

τbs

1

b− a
1

λ

(

e−λ max{x+τbs−a;0} − e−λ max{x+τbs−b;0}
)

− 1

τbs

1

b− a (max{x− a; 0} −max{x− b; 0})

− 1

τbs

1

b− a
1

λ

(

e−λ max{x−a;0} − e−λ max{x−b;0}
)

And finally we sum up everything :

fE(x) = w2
1c1(x)+w

2
2c2(x)+w

2
3c3(x)+2w1w2c4(x)+2w1w3c5(x)+w2w3c5(x)
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B Optimization algorithm derivation

After creating the mathematical model for the synchronization offset, the
problem was to optimize its parameters according to the data sets corre-
sponding to different SNR. The model is a mixture of three distributions :

fE(x) = w1
[Fg (x− µ1 + 1)− Fg (x− µ1 − 1)]

2

+w2
[Fe (x− µ2 + 1)− Fe (x− µ2 − 1)]

2
+w3fu(t)

where :

Fg(x) =
1√
2πσ

x∫

−∞

e−
t2

2σ2 dt Fe(x) =

{

1− e−λt if x ≥ 0

0 if x < 0

and

fu(x) =

{
1

τbs
if x ∈ [−τbs; 0]

0 o.w.

and since fE(x) is a pdf we have the following counstraint :

w1 + w2 + w3 = 1

The standard way of optimizing the parameters of a mixture model is the
Expectation Maximization (EM) algorithm. However, in this case, the stan-
dard EM algorithm for mixtures could not be applied for all the parameters
because of the different natures of the components in the mixture. There-
fore, the EM algorithm was used to optimize the weights in conjunction with
a gradient descent to optimize the other parameters.

Let’s begin by describing the notation :

• θ is a the parameters vector containing the weights, σ, λ, µ1 and µ2.

• The data set is y = {yi}Ni=1.

• We denote by fg(x) and fe(x) the pdf of respectively a Gaussian and
an exponential random variable.
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EM step The EM update equations for a mixture model are well-known.
First we need to compute the posterior probability that the ith sample was
generated by the jth component of the mixture :

ŵi,j = p (zj = i | yj,θ) =
p (yj | zj = i,θ) p (zj = i | θ)

p (yj | θ)

where zj is a random variable representing the component of the mixture by
which sample yj was generated. We can now write this for our distribution :

ŵ1,j =
w1

1
2 [Fg (yj − µ1 + 1)− Fg (yj − µ1 − 1)]

fE(yj|θ)

ŵ2,j =
w2

1
2 [Fe (yj − µ1 + 1)− Fe (yj − µ1 − 1)]

fE(yj|θ)

ŵ3,j =
w3fu(yj)

fE(yj |θ)

And finally, the updated weight is given by :

w
(new)
i =

1

N

N∑

j=1

ŵi,j ; i = 1, 2, 3

Gradient ascent step At the same time we optimize the weights using
EM we want to optimize the other parameters with respect to the log-
likelihood :

l (θ,y) =
N∑

i=1

log fE(yi|θ)

In order to achieve this, a simple gradient ascent method is used. Every time
we update the waits, we do a step in the direction of the positive gradient :

θ(new) = θ + ν ~∇θl (θ,y)

where ν is the step size. The derivate with respect to a single parameter
can be expressed as follows :

∂

∂θk
l (θ,y) =

N∑

i=0

∂
∂θk

fE(yi|θ)

fE(yi|θ)

First some intermediate results are derived.

∂Fg(x)

∂σ
=

∂

∂σ







1√
2πσ

x∫

−∞

e−
(t−µ)2

2σ2 dt







27



(a)
= − 1

σ

1√
2πσ

x∫

−∞

e−
(t−µ)2

2σ2 dt+
1√
2πσ

x∫

−∞

(t− µ1)
2

σ3
e−

(t−µ)2

2σ2 dt

= − 1

σ
Fg(x) +

1√
2πσ

x∫

−∞

(

− t− µ
σ

) (

− t− µ
σ2

)

e−
(t−µ)2

2σ2 dt

(b)
= − 1

σ
Fg(x) +

1√
2πσ




µ− t
σ

e−
(t−µ)2

2σ2

∣
∣
∣
∣

x

−∞
+

1

σ

x∫

−∞

e−
(t−µ)2

2σ2 dt





= − 1

σ
Fg(x)−

x− µ
σ

fg(x) +
1

σ
Fg(x) = −x− µ

σ
fg(x)

where the product derivation formula was used at (a) and integration by
part at (b). Similarly, we can derive the gradient of Fg(x) with respect to
µ.

∂Fg(x)

∂µ
=

∂

∂µ







1√
2πσ

x∫

−∞

e−
(t−µ)2

2σ2 dt







=
1√
2πσ

x∫

−∞

(
t− µ
σ2

)

e−
(t−µ)2

2σ2 dt

=
1√
2πσ

x∫

−∞

(

− ∂

∂t

{

e−
(t−µ)2

2σ2

})

dt

= − 1√
2πσ

e−
(t−µ)2

2σ2 = −fg(x)

Finally, we easily compute the derivative of Fe(x) with respect to µ and λ :

∂Fe(x)

∂µ
= −fe(x)

where fe(x) is the pdf of an exponential random variable. Finally :

g(x) =
∂Fe(x)

∂λ
=

{

(x− µ)e−λ(x−µ) if x ≥ µ
0 if x < µ

Now using all the results derived before, we easily get the gradient of
l (θ,y).

∂

∂µ1
l(θ,y) =

N∑

i=1

w1
1
2(−fg(yi + 1) + fg(yi − 1))

fE(yi)
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∂

∂σ
l(θ,y) =

N∑

i=1

w1
1
2

(

−yi+1−µ1

σ
fg(yi + 1) + yi−1−µ1

σ
fg(yi − 1)

)

fE(yi)

∂

∂µ2
l(θ,y) =

N∑

i=1

w2
1
2(−fe(yi + 1) + fe(yi − 1))

fE(yi)

∂

∂λ
l(θ,y) =

N∑

i=1

w2
1
2 (g(yi + 1)− g(yi − 1))

fE(yi)

If we reduce µ1 and µ2 to a single parameter µ = µ1 = µ2, then we have :

∂

∂µ
l(θ,y) =

N∑

i=1

w1
1
2(−fg(yi + 1) + fg(yi − 1)) + w2

1
2(−fe(yi + 1) + fe(yi − 1))

fE(yi)

C Model parameters values

The standard deviation of the Gaussian is set to σ = 0.115 and only a single
non-centrality parameter was kept (i.e. µ = µ1 = µ2). The value of the other
parameters for single user communication can be found in Table 1 while for
the case where a powerful interferer is present they can be found in Table 2.
Those parameters corresponds to a synchronization offset in nanoseconds.
Samples produced using the model with those parameters should be scaled
by 10−9 to be in seconds.
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Figure 5: The optimized model (dashed line) plotted along its empirical
counterpart (plain line) at an SNR of 5 dB. (a) pdf (b) cdf. Single user
communication.
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Figure 6: The optimized model (dashed line) plotted along its empirical
counterpart (plain line) at an SNR of 12 dB. (a) pdf (b) cdf. Single user
communication.
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Figure 7: The optimized model (dashed line) plotted along its empirical
counterpart (plain line) at an SNR of 18 dB. (a) pdf (b) cdf. Single user
communication.
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Figure 8: QQplots with empirical samples on the x-axis and samples gen-
erated from the model on the y-axis at SNR (a) 5 dB (b) 12 dB and (c) 18
dB. Single user communication.
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Figure 9: Illustration of SS-TWR transactions.
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Figure 10: Illustration of DS-TWR transactions.
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Figure 11: Simulation results for SS-TWR transactions with the errors due
to the drifts and the synchronization.
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Figure 12: Simulation results for DS-TWR transactions with the errors due
to the drifts and the synchronization.
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Figure 13: Simulation results for SS-TWR transactions with the errors due
to the synchronization only.
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SNR [dB] w1 w2 w3 λ µ

0 0.5702 0.4288 0.0011 0.1354 0.2357

1 0.4823 0.5165 0.0012 0.1309 0.2083

2 0.4185 0.5809 0.0006 0.1261 0.1724

3 0.3639 0.6352 0.0008 0.1169 0.1334

4 0.3343 0.6651 0.0006 0.1101 0.0994

5 0.3285 0.6707 0.0008 0.1078 0.0725

6 0.3477 0.6515 0.0008 0.1099 0.0520

7 0.3878 0.6113 0.0009 0.1188 0.0275

8 0.4373 0.5620 0.0007 0.1331 0.0071

9 0.4917 0.5076 0.0007 0.1489 -0.0135

10 0.5422 0.4571 0.0007 0.1643 -0.0351

11 0.5904 0.4090 0.0006 0.1796 -0.0565

12 0.6342 0.3651 0.0008 0.1903 -0.0762

13 0.6723 0.3268 0.0009 0.1989 -0.0998

14 0.7064 0.2929 0.0007 0.2047 -0.1201

15 0.7357 0.2635 0.0008 0.2107 -0.1395

16 0.7623 0.2368 0.0009 0.2132 -0.1608

17 0.7873 0.2118 0.0009 0.2137 -0.1800

18 0.8083 0.1910 0.0007 0.2143 -0.1995

19 0.8273 0.1719 0.0008 0.2130 -0.2188

20 0.8429 0.1563 0.0008 0.2120 -0.2366

21 0.8570 0.1422 0.0008 0.2100 -0.2567

22 0.8703 0.1289 0.0008 0.2099 -0.2731

23 0.8825 0.1168 0.0007 0.2049 -0.2903

24 0.8904 0.1088 0.0008 0.2055 -0.3091

25 0.9000 0.0993 0.0007 0.1998 -0.3255

Table 1: Optimal values of the parameters of the model for different SNR
points with a single user.
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SNR [dB] w1 w2 w3 λ µ

0 0.5688 0.4277 0.0035 0.1366 0.2650

1 0.5031 0.4910 0.0059 0.1316 0.1948

2 0.4258 0.5664 0.0079 0.1255 0.1555

3 0.3769 0.6083 0.0149 0.1174 0.1291

4 0.3409 0.6309 0.0282 0.1130 0.0939

5 0.3268 0.6250 0.0482 0.1101 0.0582

6 0.3314 0.5908 0.0779 0.1119 0.0403

7 0.3519 0.5396 0.1085 0.1203 0.0244

8 0.3772 0.4855 0.1373 0.1344 0.0025

9 0.4079 0.4353 0.1568 0.1507 -0.0151

10 0.4435 0.3869 0.1696 0.1649 -0.0366

11 0.4787 0.3451 0.1762 0.1757 -0.0537

12 0.5116 0.3080 0.1804 0.1849 -0.0734

13 0.5389 0.2777 0.1834 0.1914 -0.0959

14 0.5674 0.2478 0.1849 0.1935 -0.1158

15 0.5928 0.2238 0.1834 0.1974 -0.1367

16 0.6131 0.2018 0.1851 0.1988 -0.1554

17 0.6325 0.1821 0.1854 0.1957 -0.1736

18 0.6488 0.1654 0.1859 0.1958 -0.1918

19 0.6630 0.1522 0.1848 0.1936 -0.2114

20 0.6748 0.1388 0.1863 0.1915 -0.2293

21 0.6859 0.1273 0.1868 0.1875 -0.2469

22 0.6960 0.1179 0.1862 0.1838 -0.2631

23 0.7050 0.1082 0.1868 0.1802 -0.2821

24 0.7122 0.1015 0.1864 0.1769 -0.2979

25 0.7197 0.0945 0.1858 0.1742 -0.3137

Table 2: Optimal values of the parameters of the model for different SNR
points with two users.

40


