
LCAV

Master Thesis

Algorithms for the Computation of Continuous Transforms of

Rectilinear Polygons from IC Layouts

Author:

Robin Scheibler

robin.scheibler@epfl.ch

Supervisors:

Dr. Paul Hurley

Dr. Amina Chebira

Prof. Martin Vetterli

October 16, 2009

Abstract

In this work, we present a novel way of computing the continuous Haar, Fourier and
cosine series coefficients of rectilinear polygons. We derive algorithms to compute
the inner products with the continuous basis functions directly from the vertices of
the polygons. We show that the overall computational complexity of those algo-
rithms is lower than that of the traditional corresponding discrete transforms when
the number of vertices is small, in addition to sparing the memory needed for a
discrete image. This makes those continuous transforms particularly suitable for
applications in Computational Lithography (CL) where speed and memory are crit-
ical requirements. We validate the presented algorithms through an implementation
in a CL software under development at the IBM Zürich Research Laboratory and
benchmark against discrete state of the art transforms on real Integrated Circuit
(IC) layouts. Finally, we measure the approximation power of the Haar transform
when applied to rectilinear polygons from IC layouts in order to evaluate its poten-
tial for pattern matching applications.

Acknowledgements

I would like to thank particularly my advisor, Dr. Paul Hurley, for giving me the opportunity to work
on this exciting project. His constant guidance and his enlightened advice helped me a lot, especially at
times where I could not see clearly where the project was going. He was always there when I needed his
support.

Dr. Amina Chebira was my advisor from EPFL and kept a close look at what I was doing all
throughout the project. I owe a lot to her thoughts, comments and suggestions regarding my work. I
am extremely grateful for her time and effort.

Thanks also to Dr. Patrick Droz for caring so much and looking after me during my whole stay at
IBM.

I also take the chance here to express the deepest gratitude to my parents who supported and
encouraged me during all the time of my studies and much more.

Many thanks also to my friends who made all this time a lot of fun: Vincent, Julien, Christophe,
Jean, Grégoire, Marcel, Donato, Nan, and all the others.

Contents

1 Introduction 2

1.1 Problem Statement and Motivation . 2
1.2 Related Work . 3
1.3 Integrated Circuits Layouts . 4

1.3.1 Layouts . 5
1.3.2 Rectilinear Polygons . 5

1.4 Achievements . 6

2 Continuous Transforms of Rectilinear Polygons 8

2.1 Continuous Inner Product over Rectilinear Polygons . 8
2.2 Haar Series . 10

2.2.1 Haar Basis . 10
2.2.2 Pruned Haar Transform . 11
2.2.3 Computational Complexity . 14

2.3 Fourier Series . 16
2.3.1 Fourier Basis . 16
2.3.2 Algorithm Derivation . 17
2.3.3 Computational Complexity . 18

2.4 Cosine Series . 20
2.4.1 Cosine Basis . 20
2.4.2 Algorithm Derivation . 21
2.4.3 Computational Complexity . 22

3 Performance Evaluation 25

3.1 Algorithms Performance Evaluation . 25
3.1.1 Implementation . 25
3.1.2 Results . 25

3.2 Sparsity of Layouts in Haar Basis . 28

4 Conclusions 31

4.1 Future Work . 31

1

Chapter 1

Introduction

Since Gordon Moore stated his famous law in 1965, it has been a major driving force behind the effort to
shrink transistors in integrated circuits (IC). The smallest feature of those circuits has shrunk from a few
micrometers when optical lithography was created to 45 nanometers for the latest commercially available
technology. Unfortunately, the light sources used in optical lithography have not seen a corresponding
reduction in wavelength and current systems still use deep ultra-violet light sources (with a wavelength
of 193 nanometers). Although the next generation extreme ultra-violet source is under development it
seems it will not be ready for the next technology size target, namely 22 nanometers.

In optical lithography, the IC are printed by shining light through a mask onto a photosensitive wafer.
Unfortunately, the optical resolution of this system is accurate only as long as the wavelength of the
light source is on the order of the smallest feature of the mask. Various techniques and tricks have been
worked out to mitigate the severe optical degradation due to feature size shrinking far below the source
wavelength. This includes immersion lithography and Resolution Enhancement Techniques (RET), such
as Optical Proximity Correction (OPC) and phase-shift masks [1]. However, these techniques proved
insufficient in going below 32 nanometers. In order to break this limit, traditional RET techniques are
being enhanced to take advantage of all degrees of freedom in the lithography process such as illumination
amplitude, direction and phase [2]. In addition, mask constraints are being removed by the introduction
of pixelated masks [3]. This has led to the introduction of new techniques that try to globally optimize
the lithography process. Such techniques include Source-Mask Optimization (SMO) which tries to jointly
optimize the light source and the mask in order to print a given pattern [4] or inverse mask problems [5].

1.1 Problem Statement and Motivation

The common point of all these new techniques, usually referred to as a whole as Computational Lithog-
raphy (CL), is that they are very computationally intensive. That is exactly where a second problem due
to ever shrinking transistors kicks in: data explosion. Thanks to Moore’s law, the number of elements
in an IC layout (and hence its size) roughly doubles every eighteen months. This leads to sizes over a
terabyte for a single layer of a layout beyond 40nm technology, and over three terabytes for the 22nm
technology. Combined to this data explosion, current CL techniques become intractable.

However, IC layouts are composed of very repetitive patterns. Exploiting this property could allow
the CL techniques to run in a reasonable time. A small team at the IBM Zürich Research Laboratory
(ZRL) has set out to develop fast pattern matching algorithms dedicated to IC layouts.

As part of this effort, this project investigates fast transform algorithms (Fourier, cosine, Haar)
dedicated to rectilinear polygons, which are the building blocks of IC layouts. The core idea is to go
from the computational geometry world where the rectilinear polygons lie to the signal processing world.
The reason we want to easily move back and forth between the computational geometry and signal
processing worlds is that although the polygons have a very compact description in the computational
geometry domain, many problems found there are NP-hard while, on the other hand, the world of signal
processing has nice properties such as fast algorithms, linear spaces and good approximation power.

So far, what has traditionally been done, for example in SMO where the Fourier transform is used, is
to first create a discrete image by sampling the layout and then use a discrete transform on this image,

2

������
������
������
������

Light source

Mask

Lens

Wafer

Figure 1.1: Basic principle of optical lithography.

the fast Fourier transform (FFT) in the case of the SMO.
What we propose is to take the best of both worlds. In the computational geometry world, polygons

have a compact representation which defines a continuous subset of the real plane. It is therefore possible
to compute continuous transforms directly on the polygons, thus performing both sampling and transform
at the same time. We will show that this not only spares the creation and storage of the digital image,
relaxing the amount of memory used, but is also on average faster than doing a discrete transform.

Three different transforms are investigated:

� Fourier Series. The FFT is already widely used in lithography because the diffraction of the light
shining through the mask can be modelled using the Fourier Transform.

� Cosine Series. The cosine transform has the advantage over the Fourier transform of having a real
output and leads to more compact approximations. It has been used sometimes as an alternative
to the Fourier transform in inverse lithography [6, 7].

� Haar Series. The Haar basis is by its nature particularly suited for rectilinear polygons and thus
can lead to very sparse approximations. This is a very desirable property for many applications
that are targeted by the pattern matching project that is underway at IBM ZRL. Such applications
include fast pattern matching within a layout, feature extraction or transform coding.

The second goal of this project is to investigate the Haar transform of rectilinear polygons. Because
of the rectilinear nature of the Haar basis functions themselves, very sparse approximations can be found.
The possible applications lie mainly in feature extraction and pattern matching with the particular goal
of finding portions of the layout which are the same or similar in terms of shape or functionality. We
will show that it is possible to find good approximations with only a few coefficients in the Haar basis.

1.2 Related Work

The basic principle of lithography is to project light through a mask which is followed by a lens that
will reduce the size of the image of the mask and print it on a wafer as illustrated in Fig. 1.1. Because
of the Fourier transforming properties of lenses [8], the projected image is the convolution of the mask
with the following ideal filter with frequency response:

H(f, g) =

{

1 if
√

f2 + g2 ≤ NA
λ

0 otherwise
(1.1)

where f and g are the spatial frequencies, NA the numerical aperture of the lens and λ the wavelength of
the source [1]. It is thus possible to estimate the image printed by computing the Fourier transform of the

3

nMos

pMos

(a) schematic

��
��
��

��
��
��

����
����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����
����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

source and drain

contacts

gate

(b) layout

Figure 1.2: The transformation of an inverter composed of two transistors into a layout of rectilinear
polygons [1].

mask and only keep the spatial frequencies such that
√

f2 + g2 ≤ NA
λ

. This makes the Fourier transform
a tool of choice in lithography. Already in 1983, the FFT has been used to compute a precompensation
filter to reduce the proximity effect [9]. More recently, in SMO, Rosenbluth and al. use a discrete Fourier
transform to approximate the diffraction coefficients of the mask for a given source [4]. They first sample
the mask with a sampling period suitable for the maximum diffraction order they need to compute and
subsequently use a 2D FFT to compute the Fourier coefficients. In [10], the authors develop a road map
for the efficient use of the 2D FFT in computational lithography.

In lithography, the cosine transform is not as widespread as the Fourier transform. However, being
real-valued and having compacter approximation properties, it is an interesting alternative to the Fourier
transform. In inverse lithography, where the mask design is considered as an inverse problem, techniques
based on the 2D discrete cosine transform (DCT) have been proposed by [6, 7].

Finally, the Haar transform has not been used much in lithography. The only example we are aware
of is from Haslam and al. who used it to compress the Fourier precompensation filters for electron
beam lithography [11]. They used a Discrete Haar Transform on the coefficients of the discrete 2D
precompensation filter and subsequently kept only the largest coefficients.

All the transforms used so far in lithography are discrete transforms. Discrete transforms are typically
derived from continuous transforms and are, under some assumptions, equivalent in some sense. In most
cases, continuous transforms cannot be computed in practice, while efficient algorithms for discrete
transforms that can run on any modern computer are nowadays widely available. Even the so-called
continuous wavelet transform is computed in practice as the projection of a discrete signal on a frame,
namely the redundant counterpart of a basis [12].

However, in lithography the rectilinear polygons that form the IC layouts are actually subsets of R
2

described by their boundaries. If the boundary of a subset of R
2 is known, it is possible to compute any

integral on this domain, using for example Green’s theorem. In addition, whereas a discrete transform
takes as parameters all the pixels that compose the image to be transformed, the continuous transform
of a rectilinear polygon takes only the position of the vertices of the polygon. As it will be shown in this
work, it is thus possible to create fast algorithms for the continuous transform of rectilinear polygons.

1.3 Integrated Circuits Layouts

In this section, we will first give an overview of what are IC layouts and how they are created. Then, the
rectilinear polygons that compose those layouts are described mathematically in order to lay the path
for the algorithms that will be described in the next chapter.

4

Figure 1.3: A typical piece of IC layout. Figure 1.4: A piece of a contact layer from an IC
layout.

1.3.1 Layouts

IC layouts are composed of million of rectangles and more generally rectilinear polygons. They are
first created from a functional electric circuit. The elements of the circuit are transformed into specific
rectilinear polygons that can be printed using an optical lithography system. Typically such a layout is
composed of several layers. The transformation of a transistor into rectilinear polygons is illustrated in
Fig. 1.2.

These shapes are then stored into vector graphic format such as GL/1 [13] or the more modern OASIS
[14]. A typical design is split between many files of manageable size. Each file contains only a part of
the design in the form of different types of disjoint rectilinear shapes such as rectangles, polygons and
lines.

A layout is composed of many layers. There are basically two types of layers. The first type exempli-
fied in Fig. 1.3 contains mostly elongated rectangles and polygons which are the actual elements making
the electronic functionality (e.g. source/drain of transistors, gate, etc). As shown in Fig. 1.4, the second
type of layer contains only small squares which are contacts between the different layers of the first type.

1.3.2 Rectilinear Polygons

We will now give a mathematical definition of the polygons found in IC layouts. The polygons we are
dealing with are rectilinear simple lattice polygons. Rectilinear simple lattice polygons have the following
properties:

� Only right angles (rectilinear);

� Edges do not intersect each other (simple);

� No holes (simple);

� The vertices are all on the integer lattice (lattice).

An example of such a polygon is shown in Fig. 1.5.
Usually, such a polygon is defined by the set of the ordered coordinates of its K vertices

{(x0, y0), (x1, y1), . . . , (xK−1, yK−1)} , (xi, yi) ∈ Z
2. (1.2)

This set of vertices separates the plane in two parts, one called the inside of the polygon and the other
the outside of the polygon. In addition, we need to choose an order for the sequence. We arbitrarily
decided to order the vertices clockwise. Finally, to have a disjoint partition of the plane, we include in
the polygons the edges that go up and from right to left while we exclude the edges that go down or
from left to right as depicted in Fig. 1.5.

5

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

5 10 151

1

5

10

y

x

Figure 1.5: A lattice simple rectilinear polygon.
The interior of the polygon is shaded. The plain
edges (up and right to left) are included while
the dashed edges (down and left to right) are not.
The arrows indicate the ordering of the vertices.

x

y

x

y

x

y

Figure 1.6: Illustration of the construction of a
rectilinear polygon from disjoint rectangles. The
plus and minus here illustrate, respectively, the
set union and difference operators.

A rectangle is a special case of rectilinear polygon with four vertices. They are considered separately
as they have properties that make them simpler to handle. They are also easier to define. For example,
a rectangle R defined by its lower left and upper right vertices can be written as:

R
(x2,y2)
(x1,y1)

= {(x, y)|x1 ≤ x < x2, y1 ≤ y < y2}.

As illustrated in Fig. 1.6, it is possible to express a rectilinear polygon with K vertices as unions and
differences of K/2 rectangles:

P =
⋃

{i:xi+1>xi}

R
(xi+1,yi)
(xi,0)

−
⋃

{i:xi+1<xi}

R
(xi,yi)
(xi+1,0) (1.3)

=
⋃

{i:yi+1<yi}

R
(xi,yi)
(0,yi+1)

−
⋃

{i:yi+1>yi}

R
(xi,yi+1)
(0,yi)

(1.4)

where the indices are to be understood modulo K. As we will see, this definition makes it easy to take
inner products over rectilinear polygons.

So far, polygons have been defined as subsets of R
2. As such, it is not possible to directly transform

them. Therefore, we will instead consider their indicator function:

fP(x, y) = 1{(x,y)∈P} (1.5)

where P ⊂ R
2 is the polygon.

1.4 Achievements

The contributions of this thesis are:

� We found a practical way to compute the inner product of rectilinear polygons with continuous
basis functions based on the vertices of the polygon.

� We developed fast algorithms to compute the continuous series coefficients for the following bases:

– Haar basis: The standard fast orthogonal wavelet transform was found to be inefficient when
directly used with the continuous inner product. We thus developed a pruned algorithm
dedicated to rectilinear polygons.

6

– Fourier basis: Using the continuous inner product for rectilinear polygons, we were able to
map the Fourier series coefficients computations to discrete Fourier transforms with a very
sparse input, namely as many non-zero inputs as the number of vertices of the polygon being
transformed.

– Cosine basis: In the same way as with the Fourier basis, we could map the cosine series
coefficients computations to discrete sine transforms with only as many non-zero inputs as
the number of vertices of the polygon.

� We implemented those algorithms in C++ in a CL tool that is currently under development at
IBM ZRL. We added the following functionality:

– Continuous Haar, Fourier and cosine series coefficients computations.

– Discrete Haar, Fourier and cosine transforms for performance comparison with the continuous
algorithms.

– Sparse memory storage of Haar coefficients.

– Output to Matlab data file format.

– Benchmark for the transform runtime measurement.

– Approximation error computation in the Haar basis.

� We derived the theoretical computational complexities of these algorithms which allow us to decide
whether it is better to use the continuous or discrete transforms.

� We provided benchmark results of the runtime of the implemented continuous and discrete trans-
forms on real IC layouts.

� We showed that the IC layouts have a sparse representation in the Haar basis by measuring how the
approximation error decreases when we increase the number of coefficients in the approximation.

7

Chapter 2

Continuous Transforms of

Rectilinear Polygons

In this chapter, the algorithms to compute the Fourier, cosine and Haar series coefficients of rectilinear
polygons are derived. Their theoretical computational complexity is evaluated and compared to that
of discrete transform algorithms. At the end of this chapter, a summary of the complexity of both the
continuous and discrete algorithms is given in Table 2.2.

The primary reason the continuous transform can be faster than the discrete for rectilinear polygons
is that the continuous inner product of a basis function is a direct function of the vertices of the polygon.
This means that the polygon description in (1.2) is a natural sparse representation. In addition, we spare
the memory needed to form and store a discrete image.

Secondly, the sampling of the polygons in order to create a discrete image can itself be considered a
projection on a Dirac basis. By doing sampling followed by a discrete transform we are effectively doing
two transforms. As illustrated in Fig. 2.1, using a continuous transform allows to skip the sampling
operation.

Finally, in the case of the DFT, it is assumed that the sampled signal is band limited. However, this
is not the case of the rectilinear polygons as they have infinite bandwidth due to their sharp edges.

2.1 Continuous Inner Product over Rectilinear Polygons

In practice, the layouts are divided into smaller disjoint or overlapping rectangular tiles before apply-
ing the transform to each of the individual tile. Therefore we consider continuous transforms over a
rectangular subset T ∈ R

2 that we call a tile:

T = [0, Tx)× [0, Ty). (2.1)

This is not restrictive as we can ultimately increase the size of the tile to cover the whole layout. An
orthogonal basis of functions φk,l can be written as:

{φk,l : T −→ C}∞,∞
k=0,l=0

Layout

CT

DT

y

y
x

c

d

Figure 2.1: The standard discrete transform approach versus our proposed continuous transform ap-
proach.

8

and the transform coefficients of a function f ∈ L2(T) are simply the inner products with the basis
functions {φk,l}:

Xk,l = 〈f |φk,l〉 =

∫∫

T

f(x, y)φ∗k,l(x, y) dx dy.

Since the polygons in a layout are all disjoint, the image fT of a tile containing polygons P0, . . . ,
PM−1 ⊆ T is the sum of the indicator functions of the polygons:

fT (x, y) =

M−1∑

i=0

fPi
(x, y) =

M−1∑

i=0

1{(x,y)∈Pi}

Using the linearity of the inner product, we can write:

〈fT |φk,l〉 =

∫∫

T

M−1∑

i=0

1{(x,y)∈Pi}φ
∗
k,l(x, y) dx dy

=

M−1∑

i=0

∫∫

T

1{(x,y)∈Pi}φ
∗
k,l(x, y) dx dy

=
M−1∑

i=0

∫∫

Pi

φ∗k,l(x, y) dx dy.

Therefore the inner product is the sum of the double integral of the basis functions over the M polygonal
domains.

Computing the integrals over the polygonal domain also turns out to be rather straightforward.
Using (1.3) (or (1.4)) we can rewrite the integral over a polygonal domain P as a sum of integrals over
rectangles:

〈fP |φk,l〉 =

∫∫

P

φ∗k,l(x, y) dx dy =

K−1∑

i=0

yi∫

0

xi+1∫

xi

φ∗k,l(x, y) dx dy

where again, the indices should be understood modulo K. If φk,l is separable, i.e. φk,l(x, y) = φk(x)φl(y),
which is the case for the Haar, Fourier and cosine basis, this can be further simplified:

〈fP |φk,l〉 =

K−1∑

i=0

yi∫

0

xi+1∫

xi

φ∗k,l(x, y) dx dy

=
K−1∑

i=0

yi∫

0

φ∗l (y) dy

xi+1∫

xi

φ∗k(x) dx

=

K−1∑

i=0

(Φ∗
l (yi)− Φ∗

l (0)) (Φ∗
k(xi+1)− Φ∗

k(xi))

=

K−1∑

i=0

Φ∗
l (yi) (Φ∗

k(xi+1)− Φ∗
k(xi))− Φ∗

k(0)

K−1∑

i=0

(Φ∗
k(xi+1)− Φ∗

k(xi))

︸ ︷︷ ︸

=0

=

K−1∑

i=0

Φ∗
l (yi) (Φ∗

k(xi+1)− Φ∗
k(xi)) (2.2)

where Φk is a primitive of φk. Note also that every second term in this sum is actually zero because for
vertical edges xi = xi+1. In practice, we can thus reduce the number of operations by two. However, to
keep the notation light we keep it as in (2.2).

9

2.2 Haar Series

Now that we have seen in the previous section how we can compute continuous inner products, we will
show how this can be applied to the computation of the continuous Haar series coefficients. First we
start by providing a quick recall of the 1D and 2D Haar bases. Then, we will derive the algorithm and
analyze its complexity.

2.2.1 Haar Basis

We start by describing the 1D Haar basis as it makes it easy to later present the 2D case.

1D Haar Basis

The Haar basis is an orthonormal basis on [0, 1). It is composed of the scaling function

ϕ(t) =

{

1 if 0 ≤ x < 1

0 otherwise

and of the wavelet functions

ψj,k(t) = 2
j

2ψ(2jt− k)
j = 1, 2, 3, . . . k = 0, . . . , 2j − 1 (2.3)

where ψ(x) is the mother wavelet given by

ψ(t) =

1 if 0 ≤ t < 1
2

−1 if 1
2 ≤ t < 1

0 otherwise

.

2D Haar Basis

As the Haar basis is separable with regard to the x and y axes, we can define the 2D basis using the
1D basis. Now we want to work on the surface T defined in (2.1). We thus need to scale everything by

1√
TxTy

to keep unit energy. The scaling function is thus:

ϕ(x, y) =
1

√
TxTy

ϕ

(
x

Tx

)

ϕ

(
y

Ty

)

. (2.4)

We then have the product between the scaling function (corresponding to the low-pass filter in the
terminology of DWT) in the direction of the y-axis and the wavelet function (high-pass of DWT) on the
x-axis

ψ
(hl)
j,kx,ky

(x, y) =
2j

√
TxTy

ψ

(
2j

Tx

x− kx

)

ϕ

(
2j

Ty

y − ky

)

, (2.5)

and vice versa

ψ
(lh)
j,kx,ky

(x, y) =
2j

√
TxTy

ϕ

(
2j

Tx

x− kx

)

ψ

(
2j

Ty

y − ky

)

. (2.6)

Finally we have the wavelets

ψ
(hh)
j,kx,ky

(x, y) =
2j

√
TxTy

ψ

(
2j

Tx

x− kx

)

ψ

(
2j

Ty

y − ky

)

(2.7)

with j ∈ N, kx ∈ {0, . . . , 2j − 1}, ky ∈ {0, . . . , 2j − 1}. j represents the scale, kx, ky represent the shifts
in the x, respectively y, directions. The space-frequency tiling induced by this basis is represented in
Fig. 2.2.

Since the polygons boundaries are on integer lines, if we restrict the width and height of the tile to
be Tx = Ty = 2J (this is not restrictive, since we can zero-pad it), then the continuous transform will
yield the same result as the discrete Haar filter bank. In addition, all transform coefficients with scale
j ≥ J will be zero.

10

ψ (hl)

0,k ,kx y

ψ (hh)

0,k ,kx y

ψ (lh)

0,k ,kx y

ψ (hh)

1,k ,kx y

ψ (lh)

1,k ,kx y

ψ (hl)

1,k ,kx y

ψ (hh)

2,k ,kx y

ψ (lh)

2,k ,kx y

ψ (hl)

2,k ,kx y

ϕ

Figure 2.2: The space-frequency tiling on three scales. h and l indicate respectively the high pass and
low pass operations.

2.2.2 Pruned Haar Transform

The decomposition into a basis of continuous wavelets constructed from iterated filter bank can be
computed using the fast orthogonal wavelet transform (FWT) [15]. First the 1D algorithm for the
continuous FWT (CFWT) is described and then extended to 2D. Secondly, we will argue why the
Discrete FWT is generally more efficient. Finally, a pruned version of the FWT specifically for rectilinear
polygons will be described.

1D CFWT

A continuous wavelet transform constructed using an iterated filter bank has the following properties:

ϕ(t) =
√

2
∑

n

gnϕ(2t− n) (2.8)

ψ(t) =
√

2
∑

n

hnϕ(2t− n) (2.9)

where gn and hn are the taps of the discrete-time filter bank [16]. Now in the same way we defined
ψj,k(t) in (2.3) we can define the scaling function at different scales:

ϕj,k(t) = 2
j

2ϕ(2jt− k)
j = 1, 2, 3, . . . k = 0, . . . , 2j − 1 (2.10)

Now it is easy to rewrite (2.8) and (2.9) for an arbitrary scale :

ϕj,k(t) =
∑

n

gnϕj+1,2k+n(t), (2.11)

ψj,k(t) =
∑

n

hnϕj+1,2k+n(t). (2.12)

Suppose that we fix the maximum desired resolution of the transform to J , then the linearity of
the inner product and the recursivity of those two relations mean that we can express every transform

11

c0c0,0
h

c1,1
hc1,0

h

c2,3
hc2,2

hc2,1
hc2,0

h

x0 x2 x4 x6 x5 x7x3x1

+
−

+
− − −

+ +
+

+
+ + +

+ + +

+ +− − +
+ + +

++
− +

Figure 2.3: An example of Cooley-Tukey type 1D Haar FWT signal flow with a maximum resolution of
J = 3 scales. Xk = 〈f |ϕJ,k〉, k = 0, . . . , 2J − 1. Cj,k are the transform coefficients. For simplicity, the
scaling of the transform coefficients is omitted. The inner products can be understood as either discrete
or continuous.

coefficients as a linear combination of {〈f |ϕJ,k〉}2
J−1

k=0 , that is the inner products with the shifts of the
scaling function at scale J . Thus, those inner products need only be computed once.

Finally, a Cooley-Tukey like butterfly structure can be used to compute the transform coefficients
from this set of inner products [17]. An example for J = 3 is given in Fig. 2.3.

2D CFWT

Using the separability of the 2D transform, we can directly apply (2.11) and (2.12) to (2.4) to (2.7) to
obtain:

ϕj,kx,ky
(x, y) =

∑

n

∑

m

gngmϕj+1,2kx+n,2ky+m(x, y), (2.13)

ψ
(hl)
j,kx,ky

(x, y) =
∑

n

∑

m

hngmϕj+1,2kx+n,2ky+m(x, y), (2.14)

ψ
(lh)
j,kx,ky

(x, y) =
∑

n

∑

m

gnhmϕj+1,2kx+n,2ky+m(x, y), (2.15)

ψ
(hh)
j,kx,ky

(x, y) =
∑

n

∑

m

hnhmϕj+1,2kx+n,2ky+m(x, y). (2.16)

where n and m take values 0 and 1 for the Haar basis. As for the 1D transform, these relations induce
a 2D butterfly structure as illustrated in Fig. 2.4.

As in the 1D case, for a transform with maximal resolution J , all the transform coefficients can be
computed as a linear combination of

{〈
f |ϕJ,kx,ky

〉}2J−1,2J−1

kx=0,ky=0

using the relations given by (2.13) to (2.16).

CFWT vs. DFWT

If we suppose that the tile size is N ×N , with N = 2J , then all coefficient with j ≥ J will be zero. Thus,
if we want to perform a full decomposition using the CFWT, we need to compute N ×N inner products
with the scaling function at scale j = J . Since each inner product has complexity O(K), where K is the

12

cj−1,k ,k
hh

x y
cj−1,k ,k

lh
x y

cj−1,k ,k
hl

x y
x j−1,k ,kx y

++
+

+
+

+
+

−+ + −

−
+ +

−

xxx j,2k ,2k xx y

+

yj,2k ,2k +1yx j,2k +1,2kx j,2k +1,2k +1x y

Figure 2.4: One butterfly of the 2D Haar CFWT. Xj,kx,ky
=

〈
f |ϕj,kx,ky

〉
. Cxx

j,kx,ky
are the transform

coefficients. Scaling of the transform coefficients is omitted for simplicity.

number of vertices of the polygon, the total complexity of computing only those inner product at j = J
is O(KN2). However, the scaling function at scale j = J is just a 1×1 square and hence taking all those
inner product corresponds in fact to sampling the polygon and creating a digital image. But this is not
the smartest way to do it.

Better is to follow the rectilinear polygon boundaries and directly fill it. This has roughly complexity
of O(A) where A is the area of the polygon. This is necessarily smaller than the tile area N2 and hence
much smaller than KN2.

In addition, the CFWT and the DFWT are identical, except for the definition of the inner product.
Since in this case the discrete and continuous inner product agree, the complexity of the butterfly
structure of the algorithm will be O

(
N2

)
in both cases. The DFWT is thus faster.

If for some reason however, we only want to compute the coefficients up to some scale j0 < J ,
things change. Only N22−2j0 inner products are required and one inner product no longer corre-
sponds to one pixel of the digital image. Thus, the complexity of taking the discrete inner products
is O

(
(2j0 − 1)22−2j0N2

)
. While the complexity of the DFWT is now O

(
A+

(
(2j0 − 1)2 + 1

)
2−2j0N2

)
,

the CFWT is reduced to O
(
(K + 1)2−2j0N2

)
, K being the total number of vertices of the polygons in

the tile.
We will now see how the knowledge of the rectilinear polygons can help prune the butterfly signal

flow and reduce the complexity.

Pruned Haar Transform

The Haar basis acts as a discontinuity detector and all the transform coefficients will be zero except for
basis functions that intersect an edge of the polygon. Luckily the description of the polygon given by
(1.2) gives exactly this information. This means that we can simply follow the perimeter of the polygon
and compute the inner products that are not zero as illustrated in Fig. 2.5. For the full decomposition,
we start at j = J , compute the inner products on the perimeter and then go up by one scale. Then, once
more we go around the polygon and reuse whenever possible the inner products computed at the scale
below. If one inner product is missing, we use (2.2) to compute it. An example of the pruned signal flow
obtained for a 1D signal is shown in Fig. 2.6.

In addition the three types of Haar basis functions ψ
(hl)
j,kx,ky

, ψ
(lh)
j,kx,ky

and ψ
(hh)
j,kx,ky

detect different kinds

of features, respectively vertical edges, horizontal edges and vertices (i.e. corners). This means that the

13

T

Figure 2.5: The Haar basis functions have zero yield zero inner product except when they intersect the
edge of a polygon. The big thick square is the tile with Tx = Ty = T . The dashed squares are the
supports of the basis functions at a given scale j0. The thick polygonal border marks the contour of the
polygon. Basis functions yielding non-zero inner product are in grey.

inner product with ψ
(hl)
j,kx,ky

, ψ
(lh)
j,kx,ky

, ψ
(hh)
j,kx,ky

are non-zero if and only if they respectively intersect a

vertical edge, a horizontal edge and a vertex. However, if the feature, edge or vertex is placed on the jth

scale grid, the inner product will be zero anyway.
The algorithm for computing the Haar inner products is described in Algorithm 1.

2.2.3 Computational Complexity

We will now estimate the complexity of the pruned Haar transform algorithm that was derived in the
previous section. As the complexity of the algorithm is highly dependent on the geometry of the polygon
to be transformed, we will make a few assumptions to simplify the derivation. First, we suppose that
we do not make use of inner products that were computed at previous scales. This is a conservative
hypothesis and thus will lead to an overestimation of the complexity. We also leave out the scaling by a
constant operations as they are equivalent in both continuous and discrete algorithms.

To begin with, computing the intersection area between two rectangles requires 2 additions and 1
multiplication. Since a rectilinear polygon can be described as union and differences of K/2 rectangles
(see (1.3) or (1.4), whereK is the number of vertices of the polygon, the intersection area has a complexity
of K additions and K/2 multiplications.

Since the inner product of a polygon with ψ
(HL)
j,k,l , ψ

(LH)
j,k,l or ψ

(HH)
j,k,l can be computed by calculating

the intersection area of the positive and negative parts of the basis function with the polygon and then
add/subtract them to/from each other, the number of operations needed is:

MULHL = MULLH = K + 1, ADDHL = ADDLH = 2K + 1,

MULHH = 2K + 3, ADDHH = 4K + 3,

for a polygon (i.e. K > 4). For a rectangle, this reduces to:

MULHL = MULLH = 3, ADDHL = ADDLH = 6,

MULHH = 7, ADDHH = 11.

On an edge of length L, there are roughly
⌈

L
2J−j0

⌉
inner products (HL or LH) to take at a given scale

j = j0. In addition, there is, also roughly, one inner product (HH) to take on each vertex. Thus the
complexity of the transform is approximately:

CCFWT ≈
J−1∑

j=0

∑

all edges ei

⌈
Li

2J−j
CHL

⌉

+KCHH

14

c0c0,0
h

c1,0
h

c2,1
h

x3,3x3,2x3,0 x3,4 x3,6 x3,1 x3,5 x3,7

+
− +

+

+ − +
+

++
− +

−
+ +

− +
+

−
+

+
++

+

−
+ ++

x2,0

x1,1

0 0 0

0

Figure 2.6: An example of the pruned signal flow of the Haar CFWT. The signal transformed is f(t) =
u(t− 3) where u(t) is the Heaviside function on the interval [0, 8).

where CHL and CHH are the complexity of taking the inner product with ψ
(HL)
j,k,l and ψ

(HH)
j,k,l respectively.

The rounding operation makes it difficult to estimate the complexity. We use an optimistic approximation
and remove it.

CCFWT ≈
J−1∑

j=0

∑

all edges ei

Li

2J−j
CHL +KCHH

 (2.17)

=
P

2J
CHL

J−1∑

j=0

2j + JKCHH (2.18)

=
(
1− 2−J

)
PCHL + JKCHH (2.19)

≈ PCHL + JKCHH

where P is the perimeter of the polygon. So finally, in number of multiplications and additions, this
gives for a polygon (K > 4):

MULCFWT = 2JK2 + (3J + P)K + P, ADDCFWT = 4JK2 + (3J + 2P)K + P,

for a total of:
CCFWT = 6JK2 + (6J + 3P)K + 2P

operations. On the other hand, for the Discrete FWT, there are two steps, the creation of the discrete
image and the Cooley-Tukey type algorithm. The creation of the discrete image does not involve any
addition or multiplication and we found it to be, in practice, time-wise negligible compared to the actual
transform (however it still requires O(N2) storage), and we thus neglect it.

The Cooley-Tukey structure has 22j0 butterflies at scale j = j0 and each one of them requires eight
additions. This makes a total of:

ADDDFWT ≈ 8
J−1∑

j=0

22j = 8
4J − 1

3
= 8

N2 − 1

3

additions and no multiplications.
The complexity for different numbers of vertices and tile sizes is shown in Fig. 2.7 and Fig. 2.8. We

observe that the pruned CFWT is faster than the DFWT only up to some number in the order of thirty
vertices above which the DFWT should be preferred. For example, for a tile size of 256nm×256nm, we
can see in Fig. 2.7 that the number of operations required by the DFWT is higher than for the pruned

15

Algorithm 1 PrunedHaarFWT(x,y,K, J, LL,HL,LH,HH)

Require: The lists x and y of theK vertices of the rectilinear polygon. The number of scales J assuming
that the tile size is 2J × 2J . IntersectVerticalEdge and IntersectHorizontalEdge are functions that
check if a given basis function intersects the polygon. ContainsVertex checks if a given basis function
contains a vertex of the polygon. The InnerProduct functions compute the inner products with the
different basis functions.

Ensure: LL,HL,LH,HH contain the coefficients corresponding to the appropriate basis functions.
1: for j = J − 1 down to 0 do

2: for kx = 0 to 2j − 1 do

3: for ky = 0 to 2j − 1 do

4: if IntersectVerticalEdge(x,y,K, j, kx, ky) then

5: HL[j, kx, ky]← InnerProductHL(x,y,K, j, kx, ky)
6: end if

7: if IntersectHorizontalEdge(x,y,K, j, kx, ky) then

8: LH[j, kx, ky]← InnerProductLH(x,y,K, j, kx, ky)
9: end if

10: if ContainsVertex(x,y,K, j, kx, ky) then

11: HH[j, kx, ky]← InnerProductHH(x,y,K, j, kx, ky)
12: end if

13: end for

14: end for

15: end for

16: LL← InnerProductLL(x,y,K)

CFWT until we reach the critical number of thirty vertices. Our experiments show that this number is
actually around twenty-six for our current implementation. In addition, we also see that for tile smaller
than smaller of equal to 32nm×32nm, the DFWT is better whatever the number of vertices is. This
actually also means that when we reach the scale j0 = 5, at which the DFWT becomes faster, we should
stop pruning the transform. In the particular case of IC layouts, it should be noted that some parameters
like the number of vertices in a tile is strongly linked to the tile size. For example a large tile can contain
many polygons and thus many vertices while a small tile can hardly contain more than a single rectangle.
A summary of the computational complexity of all the transforms is given in Table 2.2.

From this analysis, we see that the number total number of vertices of all the polygons in a tile is
critical parameter of the complexity analysis. As can be seen in Fig. 3.5 from Section 3.1, this number
is in most cases between four and thirty with extreme values going up to seventy making our algorithm
suitable for IC layout processing. A more detailed analysis is given in Section 3.1.

2.3 Fourier Series

In this section, we will develop the algorithm for the computation of the Fourier series coefficients of
rectilinear polygons. The computational complexity of this algorithm will also be evaluated and compared
to that of the FFT.

2.3.1 Fourier Basis

The 2D Fourier basis is: {

1
√
TxTy

ej(wxkx+wyly)

}

(k,l)∈Z2

with wx = 2π
Tx

and wY = 2π
Ty

. The Fourier basis assumes that fT is periodic with period Tx in the x

direction and with period Ty in the y direction.
The main difference with the Discrete Fourier Transform (DFT) is that, since the functions are

continuous in the spatial domain, they are not periodic in the frequency domain. This means that we
need an infinite number of coefficients to have a perfect reconstruction of the image.

16

10 20 30 40 50 60 70

1

2

3

4

5

x 10
5

Number of vertex

N
um

be
r

of
 o

pe
ra

tio
ns

Haar: Tile: 256nmx256nm, Perimeter: 1500

DFWT

Pruned CFWT

Figure 2.7: Comparison of the complexity of the
Pruned CFWT versus the DFWT as a function
of the number of vertices of the polygon to trans-
form for a fixed tile size of 256nm×256nm.

4 5 6 7 8 9 10 11

10
4

10
6

log
2
(N)

N
um

be
r

of
 o

pe
ra

tio
ns

Haar: Perimeter: 1000

DFWT

CFWT K=24

CFWT K=4

Figure 2.8: Comparison of the complexity of the
pruned CFWT versus the DFWT as a function
of the tile side size N . The complexity of the
pruned CWFT is given for both a rectangle and
a polygon with 24 vertices.

On the other hand, the DFT makes the assumption that the discrete signal is a sampled version of
a band-limited continuous signal. This is clearly not the case for rectilinear polygons since they have an
infinite bandwidth due to the presence of discontinuities at the edges. Therefore, the Fourier Series will
yield a better approximation of the spectrum of the continuous image.

In addition, the Fourier series coefficients retain the Hermitian symmetry property for real-valued
signals:

Xk,l = X∗
−k,−l. (2.20)

2.3.2 Algorithm Derivation

Using (2.2), we can write the Fourier series coefficients as a function of the polygon vertices:

X0,0 = α0,0

K−1∑

i=0

yi(xi+1 − xi)

Xk,0 = αk,0

K−1∑

i=0

(yi−1 − yi)e
−jwxkxi

X0,l = α0,l

K−1∑

i=0

(xi+1 − xi)e
−jwylyi

Xk,l = αk,l

K−1∑

i=0

e−jwylyi
(
e−jwxkxi+1 − e−jwxkxi

)
,

where the scaling factor αk,l is defined as:

αk,l =

1√
TxTy

if k = l = 0

j
2πk

√
Tx

Ty
if k 6= 0 and l = 0

j
2πl

√
Ty

Tx
if k = 0 and l 6= 0

−
√

TxTy

4π2kl
if k 6= 0 and l 6= 0

.

If we overlook the scaling factor, we notice that:

1. X0,0 is proportional to the area of the polygon.

17

2. Xk,0 is proportional to the DFT of a 1D discrete signal which is zero everywhere except at the
horizontal position of the vertices of the polygon where it is equal to the cumulated length of the
vertical edges at this position:

f̃x[n] =
∑

i:n≡xi mod Tx

(yi−1 − yi), n = 0, . . . , Tx − 1. (2.21)

The edges have a positive or negative value depending on their direction.

3. X0,l is proportional to the DFT of a discrete signal which is zero everywhere except at the vertical
position of the vertices of the polygon where it is equal to the cumulated length of the horizontal
edges at this position:

f̃y[n] =
∑

i:n≡yi mod Ty

(xi+1 − xi), n = 0, . . . , Ty − 1. (2.22)

The edges have have a positive or negative value depending on their direction.

4. Xk,l is proportional to the DFT of a 2D discrete image which is zero everywhere except at the
position of the vertices of the polygon where it is either +1 or −1:

f̃x,y[m,n] =

K−1∑

i=0

(
1{m≡xi+1 mod Tx,n≡yi mod Ty} − 1{m≡xi+1 mod Tx,n≡yi mod Ty}

)
,

m = 0, . . . , Tx − 1, n = 0, . . . , Ty − 1. (2.23)

This means that we can compute all the coefficients using two 1D Fast Fourier Transforms (FFT)
with N/2 non-zero inputs and length respectively Tx and Ty and one 2D FFT with K non-zero inputs
and length Tx × Ty and later multiply by the scaling factor αk,l. FFTs with only a few non-zero input
coefficients can be efficiently computed using the transform decomposition (TD) technique [18]. The full
algorithm is described in Algorithm 2 where TD-FFT-1D, and TD-FFT-2D are respectively the 1D and
2D TD fast Fourier transforms.

However, if we want to compute only a few output coefficients, for example when we compute the
convolution with a filter such as (1.1), it might be more efficient to use Goertzel algorithm [19] or
traditional pruning techniques [20, 21].

For the sake of comparison to a standard FFT, we only implemented the algorithm described first
which computes the first Tx × Ty coefficients. Furthermore, since the data are real-valued, we actually
need only compute roughly half of those values as the rest can be determined by symmetries. Indeed,
we can compute from this reduced set of values any given coefficient of the Fourier series by using the
periodicity of the DFT and (2.20).

For example, let X̃k,l be a DFT coefficient of (2.23). Then

Xk+nTx,l+mTy
= αk+nTx,l+mTy

X̃k+nTx,l+mTy
(2.24)

= αk+nTx,l+mTy
X̃k,l (2.25)

and thus

Xk+nTx,l+mTy
=

αk+nTx,l+mTy

αk,l

Xk,l

=
kl

(k + nTx)(l +mTy)
Xk,l.

for n,m ∈ Z.

2.3.3 Computational Complexity

As in the Haar case, the computational complexity required to compute the Fourier series coefficients
will depend on the geometry of the polygon to transform. In this case, only the number of vertices K

18

Algorithm 2 FourierSeries(x,y,K,N, F)

Require: The lists x and y of the K vertices of the rectilinear polygon. The tile side length N = 2n.
Ensure: F is an N ×N matrix containing the N ×N first Fourier series coefficients of the Polygon.
1: K0[k]← 0, k = 0, . . . , N − 1
2: L0[l]← 0, l = 0, . . . , N − 1
3: KL[k, l]← 0, k, l = 0, . . . , N − 1
4: for i = 0 to K − 1 do

5: if xi = xi+1 then

6: K0 [xi]← yi − yi+1

7: else if yi = yi+1 then

8: L0 [yi]← xi+1 − xi

9: KL [xi+1, yi]← 1
10: KL [xi, yi]← −1
11: end if

12: end for

13: DFT-1D(K0)
14: DFT-1D(L0)
15: DFT-2D(KL)
16: F [0, 0]← α0,0Area(x,y,K)
17: for k = 1 to N − 1 do

18: F [k, 0]← αk,0K0[k]
19: F [0, k]← α0,kL0[k]
20: for l = 1 to N − 1 do

21: F [k, l]← αk,lKL[k, l]
22: end for

23: end for

of the polygon is important. To compare the different algorithms, we consider the input data to be
complex-valued. It is not a problem since the complexity reduction induced by a real-valued input would
be roughly one quarter for each algorithm (one half in each dimension) since we only need to compute
a quarter of the outputs.

We will compare the split-radix FFT [22] performed on the discrete image of the polygon with our
Fourier series algorithm using Goertzel or Transform Decomposition to compute the reduced input set
DFTs required.

For the complexity analysis, we consider the transform of a N ×N tile where N is a power of two.
The complexity of the 2D N ×N split-radix FFT is:

MULFFT = 2N2log2N − 6N2 + 8N

ADDFFT = 6N2log2N − 6N2 + 8N

for a total of:
CFFT = 8N2log2N − 12N2 + 16N

real operations. Goertzel algorithm requires roughly O(8N) per output points for an N -points DFT.
The TD algorithm requires [18]:

MULTD−FFT = Nlog2P − 3N + 4
N

P
+ 4

LN

P
− 4L

ADDTD−FFT = 3Nlog2P − 3N + 4
N

P
+ 2

LN

P
− 2L

where L is the number of input points, vertices in our case, and P is the size of the sub-FFT used:

P = ⌊4(L+ 1) loge 2⌋ . (2.26)

Our algorithm requires two length-N DFTs with K/2 inputs each and one 2D N ×N DFT with K
inputs. If we use Goertzel algorithm the number of real operations required is then roughly:

CFS−G = 8KN2 + 8KN + 2K. (2.27)

19

20 40 60 80 100
1

1.5

2

2.5

3

3.5

4
x 10

6

Number of vertex

N
um

be
r

of
 o

pe
ra

tio
ns

Fourier: Window size : 256x256

FS Goertzel

FS TD−FFT

Split−Radix FFT

Figure 2.9: Comparison of the complexity of the
Fourier series (FS) versus the FFT as a function
of the number of vertices of the shape to trans-
form for a fixed tile size of 256nm×256nm.

4 5 6 7 8 9 10 11

10
4

10
6

10
8

log
2
(N)

N
um

be
r

of
 o

pe
ra

tio
ns

Fourier series vs. DFT

FS Goertzel K=4

FS TD−FFT K=4

FS Goertzel K=24

FS TD−FFT K=24

Split−Radix FFT

Figure 2.10: Comparison of the complexity of the
Fourier series (FS) versus the FFT as a function
of the tile side size N . The FS complexity is
given for both a rectangle and a polygon with 24
vertices.

On the other hand if we use the TD algorithm, we need a total of:

CFS−TD = 8N log2 P1 − 12N + 16
N

P1
+ 12

KN

2P1
− 4K + 8N2 log2 P2 − 12N2 + 16

N2

P2
+ 40

KN2

P 2
2

(2.28)

where P1 and P2 are computed using (2.26) with respectively L = K/2 and L = K.
The complexity of the different algorithms are compared for different polygon size in Fig. 2.9 and for

different tile size in Fig. 2.10. We can see that for rectangles, Goertzel offer the best performance for any
given tile size. However, for non-rectangular polygons it degrades quickly when the number of vertices
increases. On the other hand, TD increases more slowly with the number of vertices. At N = 256, it
outperforms the FFT up to a hundred vertices. Therefore, to get the best performance, we should use
Goertzel for rectangles and TD until the number of vertices exceeds a threshold given as a function of
the tile size. A summary of the computational complexity of all the transforms is given in Table 2.2.

2.4 Cosine Series

In the previous section, an algorithm for the computation of Fourier series coefficients of rectilinear
polygons was presented. In this section, we will show that it is possible to develop a similar algorithm
using a continuous cosine basis. The computational complexity of this algorithm is compared to that of
the FFT based DCT.

2.4.1 Cosine Basis

The projection on the cosine basis corresponds to the projection on the Fourier basis of the symmetric
extension of fT (x, y):

f̂T (x, y) =

fT (|x|, |y|) if −Tx < x < Tx

and −Ty < y < Ty

0 o.w.

.

The 2D continuous cosine basis is:
{

γk,l cos

(
π

Tx

kx

)

cos

(
π

Ty

ly

)}

(k,l)∈N2

20

where γk,l is a scaling factor defined as:

γk,l =

1√
TxTy

if k = 0 and l = 0

2√
TxTy

if k 6= 0 and l 6= 0
√

2√
TxTy

otherwise

.

Since the cosine series is a particular case of the Fourier series applied to real-valued symmetric
signals, we have the same distinction between the cosine series and the discrete cosine transform (DCT)
than between the Fourier series and the DFT.

2.4.2 Algorithm Derivation

We have just seen how we can derive a fast algorithm for computing the Fourier series coefficients of a
rectilinear polygon. Not surprisingly, it is possible to find a very similar algorithm for the computation
of the cosine series coefficients.

Again by applying (2.2) to the cosine basis, we find the following expression for the coefficients:

X0,0 = γ̂0,0

K−1∑

i=0

yi(xi+1 − xi) (2.29)

Xk,0 = γ̂k,0

K−1∑

i=0

(yi−1 − yi) sin

(
π

Tx

kxi

)

(2.30)

X0,l = γ̂0,l

K−1∑

i=0

(xi+1 − xi) sin

(
π

Ty

lyi

)

(2.31)

Xk,l = γ̂k,l

K−1∑

i=0

{

sin

(
π

Ty

lyi

)(

sin

(
π

Tx

kxi+1

)

− sin

(
π

Ty

kxi

))}

(2.32)

where the scaling factor γ̂k,l is:

γ̂k,l =

1√
TxTy

if k = l = 0
√

2
πk

√
Tx

Ty
if k 6= 0 and l = 0

√
2

πl

√
Ty

Tx
if k = 0 and l 6= 0

2

√
TxTy

π2kl
if k 6= 0 and l 6= 0

.

As was the case with the Fourier series, we notice that if we neglect the scaling factor, those four
equations are respectively given by the area of the polygon, the 1D discrete sine transform (DST) of
(2.21), the 1D DST of (2.22) and the 2D DST of (2.23).

Since the DFT and the DST are closely related transforms, it is possible to map the DST to an FFT.
Therefore, we face the same implementation choice: Goertzel [19], TD [18], pruning [20, 21] or direct
FFT-based implementation.

At the time of the implementation, we were not aware of the TD technique and have thus implemented
the Goertzel algorithm. In addition, the DST that we would need to use is not a standard DST and is
thus not implemented in common FFT libraries like FFTW.

We use the following induction to compute the sequence Sk = a sin kx:

S0 = 0,

S1 = a sinx,

Sk = 2Sk−1 cosx− Sk−2, k = 2, 3, . . .

The full algorithm for the Goertzel based continuous cosine series coefficients computation can be found
in Algorithm 3.

21

20 40 60 80 100

0.6

0.8

1

1.2

1.4

1.6

x 10
6

Number of vertex

N
um

be
r

of
 o

pe
ra

tio
ns

Cosine: Window size : 256x256

CS Goertzel

CS TD−FFT

Split−Radix FFT

Figure 2.11: Comparison of the complexity of the
cosine series (CS) versus the FFT for real sym-
metric data as a function of the number of ver-
tices of the shape to transform for a fixed tile size
of 256nm×256nm.

4 5 6 7 8 9 10 11

10
4

10
6

10
8

log
2
(N)

N
um

be
r

of
 o

pe
ra

tio
ns

Cosine series vs. DCT

CS Goertzel K=4

CS TD−FFT K=4

CS Goertzel K=24

CS TD−FFT K=24

Split−Radix FFT

Figure 2.12: Comparison of the complexity of the
cosine series (CS) versus the FFT for real sym-
metric data as a function of the tile side size N .
The CS complexity is given for both a rectangle
and a polygon with 24 vertices.

2.4.3 Computational Complexity

The computational complexity of computing the cosine transform is very similar to the Fourier transform
since it is actually the Fourier transform of real symmetric data. Therefore, computing the cosine
coefficients require about half the number of operations.

Computing the DCT of an N ×N tile using the split-radix implementation requires:

CDCT = 4N2 log2N − 8N2 + 8N

real operations. The algorithm using Goertzel presented in the previous section uses a total of:

CCS−G = 3N2K + 10NK +K

real operations. Finally the same algorithm using TD for symmetric data instead of Goertzel would
require roughly [18]:

CCS−TD = 2K + 4N log2 P1 + 8
N

P1
− 8P1 + 2N2 log2 P2 + 4

N2

P2
− 4P2

where P1 and P2 are computed using (2.26) with respectively L = K/2 and L = K.
The complexity for different values of the number of vertices and the tile size is shown in Fig. 2.11

and Fig. 2.12. We can observe that Goertzel outperforms the standard DCT only when the polygons
have up to a dozen vertices but then its complexity quickly rises. On the other hand, TD outperforms
the DCT even for polygons with large numbers of vertices. For rectangles, TD outperforms the DCT
whatever the tile size. For polygons with more vertices, the DCT might be faster for small tile size.
However, the smaller the tile size, the fewer the number of vertices polygons in the tile can have. A
summary of the computational complexity of all the transforms is given in Table 2.2.

22

List of parameters:

N ×N The tile size with N = 2J .

J J = log2N .

K The number of vertices of a single polygon.

P The perimeter of a single polygon.

P1 P1 = ⌊4(K/2 + 1) loge 2⌋
P2 P2 = ⌊4(K + 1) loge 2⌋

Table 2.1: List of the parameters used in the computational complexity analysis. Note that some of
those parameters are highly interdependent. For example, the larger the tile size, the more likely it is
to contain many polygons and thus many vertices. On the other hand, a small tile can hardly contain
more than a single rectangle.

Complexity of the Transforms:

Continuous Discrete

Haar 6JK2 + (6J + 3P)K + 2P 8N2−1
3

Goertzel Transform Decomposition

Fourier 8KN2 + 8KN + 2K 8N log2 P1 − 12N + 16 N
P1

+ 12KN
2P1

8N2log2N − 12N2 + 16N

−4K + 8N2 log2 P2 − 12N2

+16N2

P2
+ 40KN2

P 2
2

8KN2

+8KN + 2K

Cosine 3N2K + 10NK +K 2K + 4N log2 P1 + 8 N
P1
− 8P1 4N2 log2N − 8N2 + 8N

+2N2 log2 P2 + 4N2

P2
− 4P2

Table 2.2: Summary of the computational complexity of the continuous and discrete transforms of a single
rectilinear polygon in terms of total number of additions and multiplications. A list of the parameters is
given in Table 2.1.

23

Algorithm 3 CosineSeries(x,y,K,N, F)

Require: The lists x and y of the K vertices of the rectilinear polygon. The tile side length N is a
power of two.

Ensure: F is an N ×N matrix containing the N ×N first cosine series coefficients of the Polygon.
1: for i = 0 to K − 1 do

2: Sx
i ← sin

(
π
N
xi

)

3: Cx
i ← cos

(
π
N
xi

)

4: Sy
i ← sin

(
π
N
yi

)

5: Cy
i ← cos

(
π
N
yi

)

6: Sx,0
i ← 0

7: Sy,0
i ← 0

8: Sx,1
i ← (yi−1 − yi)S

x
i

9: Sy,1
i ← (xi+1 − xi)S

y
i

10: end for

11: for k = 1 to N − 1 do

12: for i = 0 to K − 1 do

13: F [0, k]← F [0, k] + Sy,k
i

14: F [k, 0]← F [k, 0] + Sx,k
i

15: Sx,k+1
i ← 2Sx,k

i Cx
i − Sx,k−1

i

16: Sy,k+1
i ← 2Sy,1

i Cy
i − S

y,k−1
i

17: end for

18: end for

19: for i = 0 to K − 1 do

20: Sx,0
i ← 0

21: Sx,1
i ← Sx

i

22: end for

23: for k = 1 to N − 1 do

24: for i = 0 to K − 1 do

25: Sy,0
i ← 0

26: Sy,1
i ←

(

Sx,k
i+1 − S

x,k
i

)

Sy
i

27: end for

28: for l = 1 to N − 1 do

29: for i = 0 to K − 1 do

30: F [k, l]← F [k, l] + Sy,1
i

31: Sy,l+1
i ← 2Sy,l

i Cy
i − S

y,l−1
i

32: end for

33: end for

34: for i = 0 to K − 1 do

35: Sx,k+1
i ← 2Sx,k

i Cx
i − Sx,k−1

i

36: end for

37: end for

38: for k = 0 to N − 1 do

39: for l = 0 to N − 1 do

40: F [k, l]← γ̂k,lF [k, l]
41: end for

42: end for

24

Chapter 3

Performance Evaluation

In this chapter, we first give an overview of the implementation of the algorithms presented in the
previous chapter. These algorithms were implemented into the CL software tool in development at ZRL.
we then present the results of benchmark where the performance of those algorithms is compared to that
of traditional discrete transform algorithms on real IC layouts. Finally, the approximation power of the
Haar basis for rectilinear polygons is evaluated. This evaluation is done both a normal and a contact
layer from a real IC layout.

3.1 Algorithms Performance Evaluation

3.1.1 Implementation

The algorithms described Chapter 2 were implemented in the computational lithography software tool
currently under development at ZRL. Due to critical speed requirements, we have written the software
in C++. It takes as input a GL/1 file, parse it, chops polygons and places them in the corresponding
tile. It is furthermore possible to perform online processing on the shapes as they are attributed to the
tiles. Finally, different writer structures allow one to do some additional processing tile per tile once
all the shapes in the layout have been attributed and/or to output some data (e.g. images of the tiles,
transform coefficients, etc).

Since all the polygons are disjoint, the transforms can be done online as shapes are read from the
GL/1 file as shown in Fig. 3.1. However, this has the disadvantage that the transform coefficients must
be kept in memory until all the shapes are read. Even though only non-empty tiles are created and only
non-zero coefficients are stored, the memory requirement is huge since the number of non-empty tiles
can be well over 2 million, even for a modestly sized layout (i.e. a few megabytes file size). For 2 million
tiles with each 600 non-zero coefficients, 8 GB of memory are needed, without accounting for overhead.

As this is clearly not practical, we store instead the polygons in the tiles they belong to, and perform
the transform tile by tile once shapes have been read and attributed. This is illustrated in Fig. 3.2.
However, at this level, the transform is still performed on a polygon by polygon basis.

Both the pruned CWFT and DWFT as described in Section 2.2.2 were implemented in the software
tool. The cosine series was implemented using the Goertzel algorithm version while the DCT is performed
using the FFTW3 library [23]. The Fourier series was implemented using the TD-FFT algorithm for
the sub-FFT while FFTW3 was also used for the DFT. However, the Fourier series implementation
is currently still not stable and therefore not included in the results presented here. For the discrete
transforms, an image of the tile is first created and then fed to the transform algorithm.

3.1.2 Results

For the evaluation, the algorithms were run on a fairly large layout layer containing both rectangles and
non-rectangular polygons. The tile size was chosen to be 256nm×256nm because it is close to what is
used in practice in CL. The runtime was averaged for every number of vertices by tile present in the
design. For the Haar transform it was also averaged per cumulated perimeter length of the polygons in a

25

1

2

3Layout
File

T
ransform

 coefficients
z

−1

z
−1

−1
z

τ
τ
τ

Figure 3.1: Illustration of how the transform can be computed online when the polygons are read from
the layout file. Each polygon read from the layout file is chopped and placed in the corresponding tile
where it is right away transformed. After transformation, the polygon do not need to be kept in memory.
Since polygons are disjoint, the transform coefficients of the polygons in a tile can be accumulated to get
the transform coefficients of the tile. The τ block represents the transform.

Layout
File

−1z

T
ra

ns
fo

rm

Reader

coefficientsτ

Figure 3.2: Illustration of how the transform can be computed offline when all the tiles have been filled.
First, all the polygons are read from the layout file, chopped and stored in the corresponding tile. Then,
tiles are transformed one by one. The τ block is the transform.

tile to highlight the dependency between the perimeter and the complexity. For the discrete transform,
the time needed to create the discrete image is added to the runtime of the transform.

Results for the Haar transform are shown in Fig. 3.3. We can see that those results follow closely the
complexity comparisons from Section 2.2.3. In Fig. 3.3 (a), the runtime as a function of the number of
vertices in the tile is shown. We can observe that, as expected from the complexity analysis, the runtime
of the pruned CFWT is highly dependent on the number of vertices while the runtime of the DFWT
is constant for any number of vertices. Fig. 3.3 (b) shows the runtime as a function of the perimeter
of the polygon. Again, as we expect from the complexity analysis, the pruned CFWT increases as the
perimeter increases. But, in addition, we also observe that the runtime of the DFWT increases slightly
with the perimeter. This comes from the fact that the discrete image creation process is a function of
the vertices. However, compared to the transform itself, it is not significant.

For the cosine transform, the results are shown in Fig. 3.4. Here we only looked at the runtime versus
the number of vertices in the tile. Here again, the results follow closely what we expect: the runtime
of the Goertzel based cosine series coefficients computations rises sharply with the number of vertices

26

0 20 40 60 80
0

500

1000

1500

2000

2500

3000
Haar: Vertex vs Runtime Tile: 256nmx256nm

Number of vertices in tile

µ−
se

co
nd

s

Pruned CFWT

DFWT

(a) Vertex vs. Runtime

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000
Haar: Perimeter vs Runtime Tile: 256nmx256nm

Cumulated perimeter

µ−
se

co
nd

s

Pruned CFWT

DFWT

(b) Perimeter vs. Runtime

Figure 3.3: The average runtime of the Haar transform as a function of (a) the sum of the number of
vertices of all the polygons in the tile and (b) the cumulated perimeter of all the polygons in the tile.
The tile size is fixed to 256nm×256nm. For (a), 95% confidence intervals are also plotted. These results
validate the theoretical computational complexities derived in the previous chapter.

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Cosine: Vertex vs Runtime Tile: 256nmx256nm

Number of vertices in tile

µ−
se

co
nd

s

CS Goertzel

DCT

Figure 3.4: The runtime of the cosine transform as a function of the sum of all the number of vertices of
the polygons in a tile. The tile size is fixed to 256nm×256nm. 95% confidence intervals are plotted. As
expected from the theoretical complexity, the continuous algorithm based on Goertzel outperforms the
discrete transform algorithm only when the number of vertices is below ten.

while the FFT-based DCT runtime stays constant for a given tile size. It will therefore be necessary to
implement the cosine series algorithm based on TD-FFT rather than Goertzel in the future.

Finally we give also a histogram of the number of vertices in a tile and the cumulated perimeter in
Fig. 3.5 in order to give an idea of where the average complexity lies. It can be observed in the former
that although design layouts are mostly composed of rectangles, there are usually several of them in a
single tile. In addition, one can commonly find tiles containing up to 50 vertices. The second histogram
shows that the cumulated perimeter length is in most cases less than 3000nm, which falls in the area
where the pruned CFWT outperforms the DFWT.

In Table 3.1 we give an overview of the properties of the layout and the average runtime of the Haar
and cosine transform. About 93% of the polygons in the layout are rectangles while only 7% have more
vertices. However, as seen in the histogram, most tiles contain between 10 and 20 vertices. This still falls

27

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7
x 10

5

Number of vertices in tile

N
um

be
r

of
 ti

le
s

(a)

0 1000 2000 3000 4000
0

0.5

1

1.5

2
x 10

5

Cumulated perimeter

N
um

be
r

of
 ti

le
s

(b)

Figure 3.5: Histograms of (a) the number of vertices per tile and (b) the cumulated perimeter length
of the polygons a tile. We see that the average number of vertices per tile is far less than the area of
the tile, we thus expect the continuous transform algorithms to be very useful in practice. We see as
well that most of the cumulated perimeter is less than 3000nm, in the zone where the pruned CFWT
outperforms the DFWT.

Properties of layout: Average Runtime:

non-empty tiles 2233726 Continuous Discrete

Rectangles 1994018 Haar 601 µs 943 µs

Polygons 144296 Cosine 9111 µs 5193 µs

Table 3.1: General properties of the layout used for performance comparisons and average runtime of all
the transforms.

in the range where the pruned CFWT is faster than the DFWT, but it is too much for the Goertzel based
cosine series as can be seen from the average runtime. The FFT-based DCT is on average almost twice
faster. This means that we must implement the transform decomposition based cosine series algorithm
before we can use it in practice.

3.2 Sparsity of Layouts in Haar Basis

Our second experiment concerns a measure of the sparsity of IC layouts in the Haar basis. This will be
later useful to apply the Haar transforms to pattern matching or feature extraction applications in the
context of the CL project underway at IBM ZRL. Concretely, in this experiment, we first transform a
tile using the Haar basis and retain only L coefficients with the largest magnitude and then compute the
resulting approximation error.

The simplest way to do this is to use the following approximation to the tile:

f̂T (x, y) =

L−1∑

j=0

C̃jφj(x, y),

where C̃j is the jth largest transform coefficient and φj the corresponding Haar basis function, and then
compute the mean squared error (MSE). The squared error is given by:

‖e‖2 =

∫∫

T

(

fT (x, y)− f̂T
)2

dx dy.

28

Using the orthogonality of the Haar basis, we can simplify this to:

‖e‖2 =

∫∫

T

∣
∣fT (x, y)

∣
∣
2
dx dy −

∫∫

T

∣
∣
∣f̂T (x, y)

∣
∣
∣

2

dx dy

=
∑

i:Pi∈T

Area(Pi)−
L−1∑

j=0

|C̃j |2.

One can further normalize this by the cumulated area to get an error measure in the [0, 1] interval:

‖e‖2 = 1− 1
∑

i:Pi∈T

Area(Pi)

L−1∑

j=0

|C̃j |2.

This is the error function that we use to measure the approximation power of the Haar basis for rectilinear
polygons. Fig. 3.6 shows the result for a normal layer which do not contain only rectangles and a contact
layer which contains only relatively small squares. The tile chosen size is 256nm × 256nm.

We observe that the Haar basis is indeed a good match for the rectilinear polygons from IC layouts.
With about 35 coefficients (0.05% of the total number of coefficients, 2562), the MSE falls under 10%
of the polygon area. The MSE for the contact layer decreases sharply before going to zero after about
250 coefficients. However, in the case of the normal layer, after decreasing sharply for the first hundred
coefficients, the MSE takes a much slower decrease rate with several hundred coefficients needed to go
down by only one or two orders of magnitude. After about 800 coefficients, the MSE finally goes to
zero. This difference is likely due to the fact that the rectangles of the contact layer are quite small and
require thus much less coefficients to be described than the bigger polygons present in the normal layer.

However, these results do not tell the full story. One thing omitted in the approximation function we
use is that the original image takes only values 0 or 1. Although we have not been able to pursue this
approach yet due to time constraints, it is possible to use a better approximation function:

f̃T (x, y) = σ
(

f̂T (x, y)
)

where σ(t) is a thresholding function with threshold θ:

σ(t) =

{

1 if t ≥ θ
0 o.w.

and then, the error measure becomes:

‖e‖2 =

∫∫

T

(

fT (x, y)− σ
(

f̂T (x, y)
))2

dx dy.

This error measure has however one practical problem: it is not clear what the value for the threshold θ
should be. From a mathematical point of view, the solution would be to compute the optimal threshold
to recover the original image given its statistical model. From a lithography point of view, we might be
able to link this threshold to the amplitude threshold of the resist material used which determines the
shape of the object printed in the end. The best would be of course to take both of these aspects into
account.

29

0 100 200 300 400 500 600 700 800
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Approximation Error − Tile: 256nmx256nm

Number of coefficients retained

N
or

m
al

iz
ed

 M
S

E

Contact layer

Normal layer

Figure 3.6: The normalized MSE for the linear Haar approximation of the tiles. We observe that the MSE
for the contact layer decreases much more than for a normal layer as the number of coefficients in the
approximation increases. This is because the elements in the contact layer are small, thus more spatially
localized. The elements present in normal layers are usually bigger, thus require more coefficients to
be better approximated. 95% confidence intervals were omitted because they were too narrow to be
distinguishable in the figure.

30

Chapter 4

Conclusions

In this work, we developed a few algorithms to compute the continuous Haar, Fourier and cosine trans-
form of rectilinear polygons. We showed that these algorithm can be faster than the standard discrete
algorithms when applied to IC layout where the tiles typically contain polygons with relatively few ver-
tices. However, when the number of vertices exceeds some threshold (typically a few tens), standard
discrete transforms should be preferred. Faster Fourier and cosine transform are hoped to speed up the
diffraction orders computation in SMO.

We computed and validated the theoretical complexities of the algorithms by a practical implemen-
tation in a computational lithography tool currently in development at ZRL and ran a benchmark on
real IC layouts.

The second objective was to explore the use of the Haar transform for future pattern matching
applications within IC layouts. A first step in this direction was accomplished by showing that the tile
images are very sparse in the Haar basis. We hope to be able to use this to perform feature extraction
in the future as part of the CL pattern matching project.

4.1 Future Work

Theory

Inverse transforms In this work we mainly developed how one goes from the computational geometry
representation of polygons to their signal processing counterpart (transformed coefficients). From a
theoretical point of view, it would be very interesting to find an inverse transform which from the
transform coefficients would yield directly the vertices of the polygons. This leads to interesting questions
such as how many coefficients would be needed to recover the original polygon, or what happens when
you use less coefficients for the reconstruction. There might be connections with compressive sampling
which would allow to develop faster lithography algorithms.

Statistical model of IC layouts Having a statistical model of the IC layouts could allow to develop
optimal tools for the goal we are pursuing. Rate-distortion theory could be used to compute the degrada-
tion caused by dropping coefficients in approximations. Optimal decorrelating transforms for IC layouts
could then be derived.

Pattern Matching

Frames Because we ultimately want to be able to identify tiles under rotation, symmetry or translation,
translation invariant frames might be a powerful tool and should be investigated. The only concern here
is the computational overhead introduced by frames. However, it might be possible to overcome this by
using the knowledge of the structure of the polygons as we did with the pruned CFWT.

Non-linear approximation Because of the binary nature of the IC layouts it might be more suitable
to use another non-linear approximation function to measure the IC layout sparsity in the Haar basis,
as explained in the last section of the previous chapter.

31

Implementation

Fourier series The Fourier series algorithm is already under implementation but requires some more
work to be fully operational.

Cosine series The cosine series implementation currently uses Goertzel algorithm. This is fairly
inefficient and should be replaced by the TD algorithm for symmetric real data.

Pruned CFWT The pruned transform implementation requires a lot of control statement and is thus
not fully efficient. One way to make this more efficient would be to create a transform plan that would
decide when a new inner product should be computed or if we can reuse results from the previous scale.

32

Bibliography

[1] A. K. Wong, Resolution Enhancement Techniques in Optical Lithography, ser. Tutorial Texts in
Optical Engineering. Bellingham, Washington USA: SPIE Press Book, Mar. 2001, vol. TT47.

[2] F. M. Schellenberg and B. W. Smith, “Resolution enhancement technology: the past, the present,
and extensions for the future,” in Optical Microlithography XVII, vol. 5377. Santa Clara, CA, USA:
SPIE, May 2004, pp. 1–20.

[3] V. Singh, G. Guo, S. Liu, G. Jin, K. A. S. Immink, K. Shono, C. A. Mack, J. Kang, and J. en Yao,
“Computational lithography: the new enabler of Moore’s law,” in Quantum Optics, Optical Data

Storage, and Advanced Microlithography, vol. 6827. Beijing, China: SPIE, Nov. 2007, pp. 68 271Q–
5.

[4] A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, A. K. K.
Wong, and C. J. Progler, “Optimum mask and source patterns to print a given shape,” in Optical

Microlithography XIV, vol. 4346. Santa Clara, CA, USA: SPIE, 2001, pp. 486–502.

[5] A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: A non-linear
optimization approach,” in Proceedings of the SPIE, vol. 6154, 2006, pp. 1159–1172.

[6] J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography
technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor

Processes and Devices 2007, 2007, pp. 49–52.

[7] X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,”
Optics Express, vol. 16, p. 20126, Nov. 2008.

[8] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. Roberts & Company Publishers, Dec.
2004.

[9] D. G. L. Chow, J. F. McDonald, D. C. King, W. Smith, K. Molnar, and A. J. Steckl, “An image
processing approach to fast, efficient proximity correction for electron beam lithography,” Journal of

Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 1383–1390,
Oct. 1983.

[10] J. F. Chen, H. Liu, T. Laidig, C. Zuniga, Y. Cao, and R. Socha, “Development of a computational
lithography roadmap,” in Proceedings of SPIE, San Jose, CA, USA, 2008, pp. 69 241C–69 241C–12.

[11] M. E. Haslam, J. F. McDonald, D. C. King, M. Bourgeois, D. G. L. Chow, and A. J. Steckl, “Two-
dimensional haar thinning for data base compaction in fourier proximity correction for electron
beam lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer

Structures, vol. 3, no. 1, pp. 165–173, 1985.

[12] J. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their

Relatives. Cambridge University Press, 2004.

[13] D. R. Lambert, “Graphics language / one - IBM Corporate-Wide physical design data format,” in
Proceedings of the 18th Design Automation Conference. Nashville, Tennessee, USA: IEEE Press,
1981, pp. 713–719.

33

[14] SEMI, “OASIS - open artwork system interchange standard,”
http://webstore.ansi.org/RecordDetail.aspx?sku=SEMI+P39-0308, 2008.

[15] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. Academic Press, Dec.
2008.

[16] M. Vetterli, J. Kovacevic, and V. K. Goyal, The World of Fourier and Wavelets: Theory, Algorithms

and Applications. Unpublished, 2009.

[17] N. U. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal Processing. Springer-Verlag
New York, Inc., 1975.

[18] H. Sorensen and C. Burrus, “Efficient computation of the DFT with only a subset of input or output
points,” Signal Processing, IEEE Transactions on, vol. 41, no. 3, pp. 1184–1200, 1993.

[19] G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,” The American Math-

ematical Monthly, vol. 65, no. 1, pp. 34–35, 1958.

[20] D. Skinner, “Pruning the decimation in-time FFT algorithm,” Acoustics, Speech and Signal Pro-

cessing, IEEE Transactions on, vol. 24, no. 2, pp. 193–194, 1976.

[21] J. Markel, “FFT pruning,” Audio and Electroacoustics, IEEE Transactions on, vol. 19, no. 4, pp.
305–311, 1971.

[22] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electronics Letters, vol. 20, no. 1, pp.
14–16, 1984.

[23] M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005.

34

